期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于轻量化网络与迁移学习的桥梁水下桩墩结构表观病害轮廓提取
1
作者 王威 姜绍飞 +3 位作者 宋华霖 李朋泽 王圣贤 苏振恒 《中国公路学报》 EI CAS CSCD 北大核心 2024年第2期88-99,共12页
水下桩墩作为桥梁结构的重要组成部分,由于其所处复杂的水文环境,通常会在其表面产生各种表观病害。现有的光学检测方法存在2个方面的问题:①水下图像模糊不清,色彩严重失真;②无法定量化识别病害尺寸大小,且检测效率低。针对这些问题,... 水下桩墩作为桥梁结构的重要组成部分,由于其所处复杂的水文环境,通常会在其表面产生各种表观病害。现有的光学检测方法存在2个方面的问题:①水下图像模糊不清,色彩严重失真;②无法定量化识别病害尺寸大小,且检测效率低。针对这些问题,提出了图像融合增强算法与深度学习模型相结合的水下桩墩表观病害轮廓提取方法。首先,提出了一种基于点锐度权重的图像像素级融合算法,不仅能够融合2种单一增强图像,而且在保证有效色彩校正的同时还能显著提高图像的对比度。其次,对DeepLabv3+语义分割网络模型进行轻量化改进,使其保证精度的情况下,尽可能降低模型所需的权重参数量;随后采用陆上建筑结构中的表观病害公开数据集训练主干特征提取网络层,并采用迁移学习方法将其运用到目标域的检测任务中。最后,利用水下试验与实际工程采集到的图像数据集对轻量化改进模型进行训练,建立起水下桩墩表观病害轮廓提取模型,然后对其进行验证与测试,并从3个方面进行了比较与讨论,即与其他5种常用算法的比较、图像融合前后的检测结果以及噪声影响,验证了所提出改进方法的鲁棒性和有效性。结果表明:提出的图像融合增强算法可以有效地增强病害图像轮廓的细节特征,且所提的轻量化改进模型不仅具有最高的识别精度,还能够保持较高的检测效率与鲁棒性,适合植入小型水下机器人中用于实际桥梁结构的水下桩墩表观病害轮廓的实时化、定量化检测。 展开更多
关键词 桥梁工程 水下结构检测 轻量化网络 迁移学习 桥梁结构水下 表观病害
原文传递
深水桩墩结构振动台试验及地震响应预测分析 被引量:5
2
作者 柳春光 孙国帅 +1 位作者 张士博 韩亮 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第1期114-120,共7页
动力模型试验是研究桥梁结构抗震设计理论的重要方法,而神经网络技术对非线性系统具有很好的辨识和预测功能.为了分析地震动作用下动水压力对结构的影响及探索神经网络应用于地震响应预测分析的可能性,进行了水下桩墩结构振动台模型试... 动力模型试验是研究桥梁结构抗震设计理论的重要方法,而神经网络技术对非线性系统具有很好的辨识和预测功能.为了分析地震动作用下动水压力对结构的影响及探索神经网络应用于地震响应预测分析的可能性,进行了水下桩墩结构振动台模型试验及其仿真预测,衡量了水下桩墩结构的地震响应和动力特性.首先,介绍了相似律的选取、模型制作、试验现象及试验结果分析;然后,基于神经网络的预测功能,对模型试件的地震响应进行预测,并与试验结果对比研究;最后,分析试验结果及预测误差.试验结果表明:结构周围水体的存在改变了结构的地震响应及动力特性;训练有素的神经网络模型可以作为一个有用的工具,用于结构的地震响应预测. 展开更多
关键词 神经网络 预测 水下桩墩结构 试验研究
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部