稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表...稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。展开更多
对添加碳化硅球辅助微波干燥多孔硅酸钙进行试验和数值模拟,分析碳化硅球添加量和微波功率对硅酸钙干燥特性的影响.结果表明,碳化硅球的添加显著缩短了硅酸钙的干燥时间.在微波功率150 W时,15 g w(水)=75%的多孔硅酸钙中的碳化硅球最优...对添加碳化硅球辅助微波干燥多孔硅酸钙进行试验和数值模拟,分析碳化硅球添加量和微波功率对硅酸钙干燥特性的影响.结果表明,碳化硅球的添加显著缩短了硅酸钙的干燥时间.在微波功率150 W时,15 g w(水)=75%的多孔硅酸钙中的碳化硅球最优添加量为12颗,较未添加碳化硅球的样品平衡温度提升15℃,干燥能耗降低46%,干燥有效扩散系数为1.42×10^(-7) m^(2)/s.随着微波功率的增加,硅酸钙的干燥能耗和干燥时间减小,但减小趋势随功率的增加而减缓.在高微波功率下,添加碳化硅球会进一步减少硅酸钙的干燥时间和能耗.对干燥过程进行多物理场仿真,考察样品内部温度、电场强度、水分浓度场的实时分布.干燥初期,碳化硅球的添加对微波加热样品并未起到明显作用,在干燥后期形成热点,有效提升样品温度,加快了硅酸钙的干燥速度.展开更多
花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和...花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。展开更多
文摘稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。
文摘对添加碳化硅球辅助微波干燥多孔硅酸钙进行试验和数值模拟,分析碳化硅球添加量和微波功率对硅酸钙干燥特性的影响.结果表明,碳化硅球的添加显著缩短了硅酸钙的干燥时间.在微波功率150 W时,15 g w(水)=75%的多孔硅酸钙中的碳化硅球最优添加量为12颗,较未添加碳化硅球的样品平衡温度提升15℃,干燥能耗降低46%,干燥有效扩散系数为1.42×10^(-7) m^(2)/s.随着微波功率的增加,硅酸钙的干燥能耗和干燥时间减小,但减小趋势随功率的增加而减缓.在高微波功率下,添加碳化硅球会进一步减少硅酸钙的干燥时间和能耗.对干燥过程进行多物理场仿真,考察样品内部温度、电场强度、水分浓度场的实时分布.干燥初期,碳化硅球的添加对微波加热样品并未起到明显作用,在干燥后期形成热点,有效提升样品温度,加快了硅酸钙的干燥速度.
文摘花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。