Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
Monodisperse ZnxCd1-xS spheres were successfully fabricated with a high yield by a facile hydrothermal route.The as-prepared samples were characterized by X-ray diffractometry,scanning electron microscopy and UV-vis d...Monodisperse ZnxCd1-xS spheres were successfully fabricated with a high yield by a facile hydrothermal route.The as-prepared samples were characterized by X-ray diffractometry,scanning electron microscopy and UV-vis diffusion reflectance spectroscopy.The results indicate that all the prepared samples have the same hexagonal wurtzite phase and exhibit good size uniformity and regularity.Degradation of rhodamine-B(RhB) was used to evaluate the photocatalytic activities of ZnxCd1-xS samples.Zn0.4Cd0.6S possessed the best photocatalytic activity and exhibited high stability during the reaction.展开更多
LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, includ...LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AOT), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of-3 μm and widths of-1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as CI-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fiuorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a· OH scavenger, leads to quenching of "OH radicals and a simultaneous decrease in the dye degrada- tion. This suggests that "OH is the dominant active species responsible for the dye degradation.展开更多
The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predi...The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.展开更多
Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tio...Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.展开更多
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) e...Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.展开更多
We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of sp...We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.展开更多
The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles sh...The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media,the aggregation of edge-face and edge-edge in neutral media,and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension,the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented. At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants,namely,dodecylammonium acetate,alkyl quarterly amine salts 1227 and CTAB.展开更多
Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition me...Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.展开更多
Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas h...Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.展开更多
Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mec...Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.展开更多
Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent ...Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.展开更多
A new series of azo were derived from 2,5-di(p-amino phenyl)-3,6-diphenyl pyrazine in the presence of benzoic acid, salicylic acid, p-amino salicylic acid, p-methoxy phenol and pmethyl phenol. The structures of the ...A new series of azo were derived from 2,5-di(p-amino phenyl)-3,6-diphenyl pyrazine in the presence of benzoic acid, salicylic acid, p-amino salicylic acid, p-methoxy phenol and pmethyl phenol. The structures of the synthesized compounds were determined on the basis of their FTIR, UV (ultraviolet), elemental analysis and H-NMR (H-nuclear magnetic resonance) spectral date. The purity of synthesized compounds was checked by performing TLC (thin layer chromatography). The antibacterial activity was evaluated in DMSO (dimethyl sulfoxide).展开更多
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.
基金Project (20776016) supported by the National Natural Science Foundation of ChinaProject (20876109) supported by Program for New Century Excellent Talents in University of China
文摘Monodisperse ZnxCd1-xS spheres were successfully fabricated with a high yield by a facile hydrothermal route.The as-prepared samples were characterized by X-ray diffractometry,scanning electron microscopy and UV-vis diffusion reflectance spectroscopy.The results indicate that all the prepared samples have the same hexagonal wurtzite phase and exhibit good size uniformity and regularity.Degradation of rhodamine-B(RhB) was used to evaluate the photocatalytic activities of ZnxCd1-xS samples.Zn0.4Cd0.6S possessed the best photocatalytic activity and exhibited high stability during the reaction.
基金supported by the National Natural Science Foundation of China(51262018)the Fundamental Research Funds for Universities of Gansu Province(056003)the Hongliu Outstanding Talents Foundation of Lanzhou University of Technology(J201205)~~
文摘LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AOT), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of-3 μm and widths of-1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as CI-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fiuorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a· OH scavenger, leads to quenching of "OH radicals and a simultaneous decrease in the dye degrada- tion. This suggests that "OH is the dominant active species responsible for the dye degradation.
基金the National Natural Science Foundation of China (No. 20276037, No. 20006010).
文摘The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.
文摘Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.
基金supported by the National Natural Science Foundation of China (Nos. 21071133, 51273184 and 81202399)the Program for Science and Technology of Shandong Province (2011GHY11521)the Natural Science Foundation of Qingdao City (Nos. 11-2-4-1-(9) gch), 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.
基金Supported by the Goverment of Malaysia,Intensified Research in Priority Areas(IRPA Project)(No.50258-J3)
文摘We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media,the aggregation of edge-face and edge-edge in neutral media,and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension,the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented. At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants,namely,dodecylammonium acetate,alkyl quarterly amine salts 1227 and CTAB.
文摘Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.
文摘Hydrate formation rate plays an important role in the making of hydrates for natural gas storage. The effect of sodium dodecyl sulfate (SDS), alkyl polysaccharide glycoside (APG) and cyclopentane (CP) on natural gas hydrate formation rate, induction time and storage capacity was studied. Micellar surfactant solutions were found to increase hydrate formation rate in a quiescent system and improve hydrate formation rate and natural gas storage capacity. The process of hydrate formation includes two stages with surfactant presence. Hydrate forms quickly in the first stage, and then the formation rate is slowed down. Surfactants (SDS or APG) reduce the induction time of hydrate formation. The effect of an anionic surfactant (SDS) on gas storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduces the induction time of hydrate formation, but can not improve the natural gas storage capacity in hydrates.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y405496) the State Key Development Program for Basic Research of China (2007CB216409)
文摘Borohydrides present interesting options for the electrochemical power generation acting either as hydrogen source or anodic fuel for direct borohydride fuel cells(DBFC).In this work,Mg-Ni composite synthesized by mechanically alloying method,used as the catalyst for the hydrolysis of borohydride,has been investigated.Co-doping treatment has been carried out for the purpose of improving the hydrolysis rate further.The as-prepared and Co-doped Mg-Ni composites with low cost showed high catalytic activity to the hydrolysis of borohydride for hydrogen generation.After Co-doping,the hydrogen generation rate was around 280 ml·g-1·min-1.Borohydride would be a promising hydrogen source for fuel cells.
基金the Iran Nanotechnology Initiative Council for the financial and other supports
文摘Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.
文摘A new series of azo were derived from 2,5-di(p-amino phenyl)-3,6-diphenyl pyrazine in the presence of benzoic acid, salicylic acid, p-amino salicylic acid, p-methoxy phenol and pmethyl phenol. The structures of the synthesized compounds were determined on the basis of their FTIR, UV (ultraviolet), elemental analysis and H-NMR (H-nuclear magnetic resonance) spectral date. The purity of synthesized compounds was checked by performing TLC (thin layer chromatography). The antibacterial activity was evaluated in DMSO (dimethyl sulfoxide).