At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet veloci...At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.展开更多
China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system i...China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.展开更多
The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating aro...The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating around its own symmetry axis, part of the machine energy is transferred to the fluid itself, pushing it to the disk periphery. This way the farther the exhaust orifice is from the disk outside contour, the larger will be the pressure loss experienced by the system. This work studies the overall energy balance and momentum exchange between fluid and machine. Simple calculation shows that for total pressure gradients above two bar the machines become inefficient for having tangential velocity whose intensity is 50% higher than the intensity of the jet velocity prior to the interaction. For values of the pressure gradient above 5.7 bar, the machine peripheral velocity is equal to the incident jet velocity. In this case it is not possible to deliver power under permanent regime. Finally it is shown that when the feeding pressure of an impulse turbine is enough for more than one stage, then one should use this option to obtain thermal efficiencies similar to those of reaction machines. The jet of fluid to move a Tesla like turbine should enter the unit as close as possible to the direction tangential to the movement, (i.e., normal to the radius at the considered position). This fluid should leave the machine right after interacting with it. Any permanence of the fluid after transferring its momentum to the machine can be extremely prejudicial to the system behavior.展开更多
基金Projects(51205171,51376081)supported by the National Natural Science Foundation of ChinaProject(1201026B)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.
基金Project(2020YFF0426370) supported by the National Key Research and Development Program of ChinaProject(SF-202010) supported by the Water Conservancy Technology Demonstration,China。
文摘China’s first high-pressure hydraulically coupled rock-breaking tunnel boring machine(TBM) was designed to overcome the rock breaking problems of TBM in super-hard rock geology, where high-pressure water jet system is configured, including high-flow pump sets, high-pressure rotary joint and high-pressure water jet injection device. In order to investigate the rock breaking performance of high-pressure water-jet-assisted TBM, in situ excavation tests were carried out at the Wan’anxi Water Diversion Project in Longyan, Fujian Province, China, under different water jet pressure and rotational speed. The rock-breaking performance of TBM was analyzed including penetration, cutterhead load, advance rate and field penetration index. The test results show that the adoption of high-pressure water-jet-assisted rock breaking technology can improve the boreability of rock mass, where the TBM penetration increases by 64% under the water jet pressure of 270 MPa. In addition, with the increase of the water jet pressure, the TBM penetration increases and the field penetration index decreases. The auxiliary rock-breaking effect of high-pressure water jet decreases with the increase of cutterhead rotational speed. In the case of the in situ tunneling test parameters of this study, the advance rate is the maximum when the pressure of the high-pressure water jet is 270 MPa and the cutterhead rotational speed is 6 r/min. The technical superiority of high-pressure water-jet-assisted rock breaking technology is highlighted and it provides guidance for the excavation parameter selection of high-pressure hydraulically coupled rock-breaking TBM.
文摘The recent technological developments being applied to Tesla like turbines for converting fluid energy into mechanical (axis) energy often lead to non-frequently used models. Given a disk shaped machine rotating around its own symmetry axis, part of the machine energy is transferred to the fluid itself, pushing it to the disk periphery. This way the farther the exhaust orifice is from the disk outside contour, the larger will be the pressure loss experienced by the system. This work studies the overall energy balance and momentum exchange between fluid and machine. Simple calculation shows that for total pressure gradients above two bar the machines become inefficient for having tangential velocity whose intensity is 50% higher than the intensity of the jet velocity prior to the interaction. For values of the pressure gradient above 5.7 bar, the machine peripheral velocity is equal to the incident jet velocity. In this case it is not possible to deliver power under permanent regime. Finally it is shown that when the feeding pressure of an impulse turbine is enough for more than one stage, then one should use this option to obtain thermal efficiencies similar to those of reaction machines. The jet of fluid to move a Tesla like turbine should enter the unit as close as possible to the direction tangential to the movement, (i.e., normal to the radius at the considered position). This fluid should leave the machine right after interacting with it. Any permanence of the fluid after transferring its momentum to the machine can be extremely prejudicial to the system behavior.