Water relations of Alhagi sparsifolia Shap. at the transition zone between oases and sandy desert were studied in the southern fringe of Taklamakan Desert. Results showed that A. sparsifolia maintained the positive tu...Water relations of Alhagi sparsifolia Shap. at the transition zone between oases and sandy desert were studied in the southern fringe of Taklamakan Desert. Results showed that A. sparsifolia maintained the positive turgor during the summer. The steady high predawn water potential (psi(P)) indicated A. sparsifolia had sufficient hydration and water supply in growing season. In July, water deficit caused by drought stress had no effect on the transpiration of A. sparsifolia. Therefore, drought stress is not a main factor affecting the survival of plants. The physiological adaptation to drought of A. sparsifolia was shown mainly at the leaf level by significant difference (DeltaII) and relative water content (RWC) between the osmotic pressure at full turgor and at turgor loss, by occurring of osmotic adjustment, by high percentage of dry mass-related water content ( WCsat), by RWC at turgor loss point ( RWCp) in stable level and low RWC of the saturated symplast (RWCsym). However, the morphological features of transpiring surface reduction and deep root system seem to be the main way for the plant to adapt to the extreme drought environment. Result also suggests that one time of irregular irrigation in summer will not be helpful to recover water status of A. sparsifolia in location where the water table is very low.展开更多
[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, b...[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, breeding of drought-re- sistant varieties and selection of maize varieties for fall sowing. [Method] At the tasseling stage, total five degrees of drought stress (4, 8, 12, 16 and 20 d) and corresponding re-watering after drought stress were simulated by a tub planting ex- periment in greenhouse for five different maize varieties (Guidan 0810, Dika 008, Zhengda 619, Chenyu 969, Guidan 901). Normal watering was set as the control. Sampling was carried out on Day 1 after drought stress and on Day 15 after re- watering, and the secondary root number, maximum root length, green leaf number, root dry weight and shoot dry weight were measured. At the harvest time, the ear yield per plant was measured. With yield as the basis, the drought resistance coef- ficient and drought resistance index were calculated. Cluster analysis was conducted for drought resistance coefficient. [Result] The shoot dry weight, root dry weight, secondary root number, maximum root length and green leaf number of maize in the treatment groups decreased compared with those in the control group. The ratio of each index between the treatment and control groups declined with the extension of drought stress. After re-watering, the re-growth amount of each index all de- creased as the stress time prolonged. Post-re-watering over compensation effect oc- curred in none of the indices except the maximum root length, after 4 days of drought stress. Under drought stress, the reductions of all the indices of Guidan 0810, Dika 008 and Zhengda 619 were smaller than those of Chenyu 969 and Guidan 901. After re-watering, the re-growth abilities of Guidan 0810, Dika 008 and Zhengda 619 were stronger than those of Chenyu 969 and Guidan 901. The drought resistance coefficients and drought resistance indexes of Guidan 0810, Dika 008 and Zhengda 619 were all greater than those of Chenyu 969 and Guidan 901. The results of drought resistance coefficient cluster analysis showed that the five maize varieties were classified into two groups: Guidan 0810, Dika 008 and Zheng- da 619 had strong drought resistance, while Guidan 901 and Chenyu 969 had weak drought resistance. [Conclusion] The root and shoot growth of Guidan 0810, Dika 008 and Zhengda 619 was slightly affected by drought stress during the tasseling period, and they restored the growth rapidly after re-watering, thus ensuring high biomass and yield. Therefore, Guidan 0810, Dika 008 and Zhengda 619 can be promoted as drought-resistant autumn maize varieties in Guangxi.展开更多
[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water...[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water-saving rice variety "Luhan No.1" and original receptor "6527" were used for dry processing without aquifer,and rice under regular irrigation conditions was used as the control.[Result] Under conditions which had economized on 67.4% of water compared with the regular irrigation,decreasing rates of 1 000-seed weight,seed setting rate,plant height and effective panicles of "Luhan No.1" were relatively small and had not achieved a significant level,while the decreasing rates of production of the region,total grains per panicle,theoretical production and filled grains per panicle of the original receptor "6527" were all over 25% and had attained very significant levels(P0.01).[Conclusion] "Luhan No.1" had shown stable production,energy conservation,reducing environmental pollution and other advantages under water-conservating cultivation conditions.展开更多
[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated...[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated with drought and wa- ter stress, and then the samples were collected and analyzed. [Result] Compared with the control group, under drought and water stress, multiple mineral elements tended to accumulate and increase, and there were significant differences in the contents of Cu, Mn, Ni and P (P〈0.05). [Conclusion] Under drought and water stress, mineral elements in potted Poa crymophila tended to accumulate and in- crease, which is the adaption and response of Poa crymophila to drought and water stress, as well as the re-verification of the starvation effect hypothesis of mineral effects. The starvation effect of mineral elements is one of the endogenic forces for the accumulation and differentiation of mineral elements in grassland plants.展开更多
The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties....The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.展开更多
[Objective] This study aimed to reveal responses of Magnolia multiflora to soil drought stress. [Method] Pot experiment was employed to simulate drought stress, and photosynthetic and physiological indices of M. multi...[Objective] This study aimed to reveal responses of Magnolia multiflora to soil drought stress. [Method] Pot experiment was employed to simulate drought stress, and photosynthetic and physiological indices of M. multiflora were determined. [Result] The net photosynthetic rate (Pn) of M. multiflora did not change significantly under mild drought stress, and reduced significantly under moderate and severe drought stress. Drought stress reduced stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci), and compared with those in the control group, the Pn, Gs, Tr and Ci under severe drought stress declined by 61.04%, 86.27%, 87.77% and 42.63%, respectively. The malondialdehyde (MDA) content in M. multiflora leaves did not increase significantly under mild drought stress, and increased significantly under moderate and severe drought stress. The MDA content in M. multiflora leaves under severe drought stress was 1.63 times as high as that in the control group. The proline (Pro) and soluble sugar contents of M. multiflora increased significantly with the aggravation of drought stress, and those under severe drought stress were 8.06 times and 3.16 times respectively higher than those in the control group. [Conclusion] M. multiflora has a strong drought tolerance, and is suitable for growing in relatively arid environment. It can be used as candidate for vegetation restoration in hydropower engineering slope.展开更多
[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluati...[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.展开更多
Seeds germination and seedling stages were studied on the legume seeds of Vicia angustifolia L. to reveal the effects of drought stress on germination char- acteristics and water absorption characteristics. The result...Seeds germination and seedling stages were studied on the legume seeds of Vicia angustifolia L. to reveal the effects of drought stress on germination char- acteristics and water absorption characteristics. The results showed that the rate of seed water uptake,germination percentage,germination index,vigor index,seedling height,root length and plant water content decreased with the increase of concen- tration of PEG stress. However,seedling and root dry weight and root/shoot ratio ini- tially increased followed by a decrease. The lowest osmotic potential threshold was -0.42 MPa.展开更多
[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of ap...[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of apple rootstocks under simulated drought condition induced by polyethylene glycol (PEG). [Method] Apple (Malus baccata) seedlings were employed as test material. There were five treatments (T1-5) designed as ABA application rates at 0 (T1), 25 (T2), 50 (T3), 75 (T4) and 100 (T5) μmol/L in the hydroponic experiments. The changes of the relative leaf water content (RLWC), root activity, malondialdehyde (MDA) content, proline (Pro) content, superoxide dismutase (SOD) activity and peroxidase (POD) activity were assayed under PEG stress. All indices were analyzed by principal component analysis (PCA) to evaluate the optimal ABA concentration alleviating drought stress. [Result] The different concentration of ABA could increase Pro content and antioxidant enzyme activities, relieve the descent of RLWC and decrease MDA content. Low levels of ABA increased root activity, whereas the high concentrations (T3-T5) inhibited it. Statistical analysis based on the PCA indicated that the cumulative contribution rate of the first two principal components was raised to 96.457%, and the PCA in the T2 scored the highest. [Conclusion] The exogenous ABA could decrease the damage caused by drought stress to Malus baccata seedlings and enhance the ability of drought tolerance by increasing osmolyte content, anti- oxidative enzyme activity and reducing the level of membrane lipid peroxidation. The optimal concentration of ABA was 25 μmol/L.展开更多
Chickpea (Cicer arietinum L.) is a crop cultivated in semi-arid and rainfed areas of Pakistan and it experiences terminal drought stress. In this paper, the morpho-anatomical study regarding roots of chickpea was ca...Chickpea (Cicer arietinum L.) is a crop cultivated in semi-arid and rainfed areas of Pakistan and it experiences terminal drought stress. In this paper, the morpho-anatomical study regarding roots of chickpea was carried out to investigate the drought adaptation strategies. Twelve cultivars of chickpea were grown in pots under drought stress of 70% and 35% field capacity in addition to control (100%). Root segments of mature chickpea plants were sectioned in 2 cm from root-shoot junction and used for making transverse sections. The development of sleeve and stele tissues and their proportion were markedly influenced by moisture availability to the root system. Roots length, flesh and dry weight, and number of secondary roots were decreased under field capacity of 70% and 35% as compared to control in 12 cultivars of chickpea. Root epidermis and cortex of CH47/04 consisted of cells with thickened walls and with 2-3 cell layers of sclerenchymatous cells below the epidermis. Increased number of medullary rays and high vascular region was observed in cultivars CH120/04, CH47/04, CH587/05 and CH87/02. Anatomical studies showed that CH47/04 was highly tolerant among 12 cultivars of chickpea, while CH587/05 and CH87/02 behaved moderately under both levels of drought stress (70% and 35% field capacity).展开更多
In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptabil...In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.展开更多
Drought, flood, salinity, or a combination of these limits rice production. Several rice varieties are well known for their tolerance to specific abiotic stresses. We determined genetic relationship among 12 rice vari...Drought, flood, salinity, or a combination of these limits rice production. Several rice varieties are well known for their tolerance to specific abiotic stresses. We determined genetic relationship among 12 rice varieties including 9 tolerant to drought, flood, or salinity using inter-simple sequence repeat (ISSR) markers. Based on all markers, the nine tolerant varieties formed one cluster distinct from the cluster of three control varieties. The salt-tolerant varieties were closest to two flood-tolerant varieties, and together they were distinct from the drought-tolerant varieties. (GA)8YG was the most informative primer, showing the highest polymorphic information content (PIC) and resolving power (Rp). The drought-, flood-, and salt-tolerant varieties grouped in three distinct clusters within the group of tolerant varieties, when (GA)8YG was used. Sabita was the only exception. The two aus varieties, Nagina22 and FR13A, were separated and grouped with the drought- and flood-tolerant varieties, respectively, hut they were together in dendrograms based on other primers. The results show that ISSR markers associated with (GA)sYG delineated the three groups of stress-tolerant varieties from each other and can be used to identify genes/new alleles associated with the three abiotic stresses in rice germplasm.展开更多
Aims Predicting drought consequences on forests and fruit crop plantings requires improved understanding of drought responses of both leaf and fine-root resource acquisitive traits(specific leaf area—SLA,specific roo...Aims Predicting drought consequences on forests and fruit crop plantings requires improved understanding of drought responses of both leaf and fine-root resource acquisitive traits(specific leaf area—SLA,specific root surface area—SRA and specific root length—SRL).We hypothesize their responses are coordinated towards integrated plant resource conservation under severe drought.Methods We tested the hypothesis with a greenhouse-based drought experiment on saplings of six Prunus hybrids with a priori known contrasting drought sensitivity.Saplings were subjected to either control(100%field capacity)or severe drought stress treatment(33%evapotranspiration of hybrid-specific control plants).Sample collections were carried out at 30 and at 60 days after the start of treatments,for both control and stressed saplings.Important Findings No hybrid showed concurrent significant decrease of SLA and SRA(or SRL)under severe drought.The fine-root traits of the six hybrids showed two major drought-response scenarios,in particular:(i)increased root tissue density(RTD)and decreased average root diameter without significant change of SRL and(ii)increased RTD and decreased SRL without significant change of average root diameter.Drought responses of leaf gas exchange,SRA,SRL and RTD were closely correlated along a gradient towards resource conservation from control to drought-stressed plants in all hybrids,which was orthogonal to another gradient characterized by a hybrid-dependent decrease of SLA.These findings highlight(i)the multi-dimensionality of root-trait drought responses,(ii)the decoupling between leaf economics and leaf hydraulics and(iii)the covariation of leaf and root hydraulics in terms of trait drought responses.The study contributes to identifying the origin of the multi-dimensionality of root-trait drought response at intraspecific scale,and highlights differential drought–response combinations of leaf and fine-root traits among hybrids to survive under severe soil drought stress.展开更多
Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physio...Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physiological responses to drought of two Retama raetam(retama)subspecies from Tunisia,one of them living under the desert climate(subsp.raetam)and the other one growing on the coast(subsp.bovei).Methods To physiologically characterize the two R.raetam subspecies,and to elucidate their main mechanisms underlying their tolerance to drought stress,parameters related to seed germination,growth,photosynthesis(net photosynthetic rate,intracellular CO_(2) concentration,transpiration rate,stomatal conductance and water-use efficiency)and accumulation of osmolytes(proline,glycine betaine[GB]and soluble sugars)were determined in 4-month-old plants subjected to stress for up to 1 month.Important Findings Drought significantly inhibited germination,growth and all the evaluated photosynthetic parameters.Plants of R.raetam subsp.bovei were severely affected by drought after 3 weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls.At the same time,proline and GB significantly accumulated compared with the irrigated controls,but much less than in R.raetam subsp.raetam;in the latter subspecies,proline and GB increased to levels 24-and 6-fold higher,respectively,than in the corresponding controls.In summary,the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate,suggesting that tolerance in R.raetam is dependent on accumulation of osmolytes.展开更多
文摘Water relations of Alhagi sparsifolia Shap. at the transition zone between oases and sandy desert were studied in the southern fringe of Taklamakan Desert. Results showed that A. sparsifolia maintained the positive turgor during the summer. The steady high predawn water potential (psi(P)) indicated A. sparsifolia had sufficient hydration and water supply in growing season. In July, water deficit caused by drought stress had no effect on the transpiration of A. sparsifolia. Therefore, drought stress is not a main factor affecting the survival of plants. The physiological adaptation to drought of A. sparsifolia was shown mainly at the leaf level by significant difference (DeltaII) and relative water content (RWC) between the osmotic pressure at full turgor and at turgor loss, by occurring of osmotic adjustment, by high percentage of dry mass-related water content ( WCsat), by RWC at turgor loss point ( RWCp) in stable level and low RWC of the saturated symplast (RWCsym). However, the morphological features of transpiring surface reduction and deep root system seem to be the main way for the plant to adapt to the extreme drought environment. Result also suggests that one time of irregular irrigation in summer will not be helpful to recover water status of A. sparsifolia in location where the water table is very low.
基金Supported by National High Technology Research and Development Program of China(2011AA10A103)National Key Technology Research and Development Program of China(2011BAD35B01)+1 种基金Key Research & Development Project of Guangxi Zhuang Autonomous Region(GK AB16380133)Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(GNK 2015YT24)~~
文摘[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, breeding of drought-re- sistant varieties and selection of maize varieties for fall sowing. [Method] At the tasseling stage, total five degrees of drought stress (4, 8, 12, 16 and 20 d) and corresponding re-watering after drought stress were simulated by a tub planting ex- periment in greenhouse for five different maize varieties (Guidan 0810, Dika 008, Zhengda 619, Chenyu 969, Guidan 901). Normal watering was set as the control. Sampling was carried out on Day 1 after drought stress and on Day 15 after re- watering, and the secondary root number, maximum root length, green leaf number, root dry weight and shoot dry weight were measured. At the harvest time, the ear yield per plant was measured. With yield as the basis, the drought resistance coef- ficient and drought resistance index were calculated. Cluster analysis was conducted for drought resistance coefficient. [Result] The shoot dry weight, root dry weight, secondary root number, maximum root length and green leaf number of maize in the treatment groups decreased compared with those in the control group. The ratio of each index between the treatment and control groups declined with the extension of drought stress. After re-watering, the re-growth amount of each index all de- creased as the stress time prolonged. Post-re-watering over compensation effect oc- curred in none of the indices except the maximum root length, after 4 days of drought stress. Under drought stress, the reductions of all the indices of Guidan 0810, Dika 008 and Zhengda 619 were smaller than those of Chenyu 969 and Guidan 901. After re-watering, the re-growth abilities of Guidan 0810, Dika 008 and Zhengda 619 were stronger than those of Chenyu 969 and Guidan 901. The drought resistance coefficients and drought resistance indexes of Guidan 0810, Dika 008 and Zhengda 619 were all greater than those of Chenyu 969 and Guidan 901. The results of drought resistance coefficient cluster analysis showed that the five maize varieties were classified into two groups: Guidan 0810, Dika 008 and Zheng- da 619 had strong drought resistance, while Guidan 901 and Chenyu 969 had weak drought resistance. [Conclusion] The root and shoot growth of Guidan 0810, Dika 008 and Zhengda 619 was slightly affected by drought stress during the tasseling period, and they restored the growth rapidly after re-watering, thus ensuring high biomass and yield. Therefore, Guidan 0810, Dika 008 and Zhengda 619 can be promoted as drought-resistant autumn maize varieties in Guangxi.
基金Supported by National863Green Super Rice Project"Water-saving and Drought-resistant Rice Germplasm Innovation"(2010AA101803)Anhui Province Foreign Expert Bureau Agricultural Introduction and Promotion Project"Demonstration and Extension of National Authorized Dry Rice Variety'Luhan No.1'"(Y20083400015)~~
文摘[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water-saving rice variety "Luhan No.1" and original receptor "6527" were used for dry processing without aquifer,and rice under regular irrigation conditions was used as the control.[Result] Under conditions which had economized on 67.4% of water compared with the regular irrigation,decreasing rates of 1 000-seed weight,seed setting rate,plant height and effective panicles of "Luhan No.1" were relatively small and had not achieved a significant level,while the decreasing rates of production of the region,total grains per panicle,theoretical production and filled grains per panicle of the original receptor "6527" were all over 25% and had attained very significant levels(P0.01).[Conclusion] "Luhan No.1" had shown stable production,energy conservation,reducing environmental pollution and other advantages under water-conservating cultivation conditions.
文摘[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated with drought and wa- ter stress, and then the samples were collected and analyzed. [Result] Compared with the control group, under drought and water stress, multiple mineral elements tended to accumulate and increase, and there were significant differences in the contents of Cu, Mn, Ni and P (P〈0.05). [Conclusion] Under drought and water stress, mineral elements in potted Poa crymophila tended to accumulate and in- crease, which is the adaption and response of Poa crymophila to drought and water stress, as well as the re-verification of the starvation effect hypothesis of mineral effects. The starvation effect of mineral elements is one of the endogenic forces for the accumulation and differentiation of mineral elements in grassland plants.
文摘The study aims at exploring the possibility of using the recovery ability af- ter drought stress-rewatering at vegetative growth stage as the evaluating index in water use efficiency (WUE) of winter wheat varieties. 'Jing 411 ', 'Jinmai 47' and their 34 near isogenic lines (NILs) were used as test materials. Semi-automatic rainproof shelter and the percolating pools were used for simulating drought treat- ment. After suffering severe drought stress, winter wheat crops were rewatered at early jointing stage. The biomass accumulation after rewatering was determined as recovery ability index. In the meanwhile, plant height in the end of vegetative growth stage was measured, and WUE of varieties/lines was also determined. Thereafter, the differences in recovery ability, plant height and the population WUE, together with the correlation between recovery ability and population WUE were analyzed, respectively. The results showed that there were significant differences in recovery ability among some varieties/lines. The recovery ability was affected by both geno- type and environment, and the interaction existed in these two factors. Significant differences existed in plant height and population WUE among the 34 NILs along with their parents. There was a significantly positive correlation between recovery ability and plant height of varieties/lines. Recovery ability and plant height were very significantly and positively correlated with population yield WUE respectively. The re- sults indicated that recovery ability after drought stress-rewatering could be used as an evaluating index of population WUE under drought condition.
基金Supported by National Natural Science Foundation of China(No.51179094)~~
文摘[Objective] This study aimed to reveal responses of Magnolia multiflora to soil drought stress. [Method] Pot experiment was employed to simulate drought stress, and photosynthetic and physiological indices of M. multiflora were determined. [Result] The net photosynthetic rate (Pn) of M. multiflora did not change significantly under mild drought stress, and reduced significantly under moderate and severe drought stress. Drought stress reduced stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci), and compared with those in the control group, the Pn, Gs, Tr and Ci under severe drought stress declined by 61.04%, 86.27%, 87.77% and 42.63%, respectively. The malondialdehyde (MDA) content in M. multiflora leaves did not increase significantly under mild drought stress, and increased significantly under moderate and severe drought stress. The MDA content in M. multiflora leaves under severe drought stress was 1.63 times as high as that in the control group. The proline (Pro) and soluble sugar contents of M. multiflora increased significantly with the aggravation of drought stress, and those under severe drought stress were 8.06 times and 3.16 times respectively higher than those in the control group. [Conclusion] M. multiflora has a strong drought tolerance, and is suitable for growing in relatively arid environment. It can be used as candidate for vegetation restoration in hydropower engineering slope.
基金Supported by Key Projects in the National Science &Technology Pillar Program (2007BAD30B05)Key Project of Science and Tech-nology Department of Guangxi Province of China (0782004-5)the Program for Postgraduates Research Innovattion in GX. Univer-sity (105930903049)~~
文摘[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.
文摘Seeds germination and seedling stages were studied on the legume seeds of Vicia angustifolia L. to reveal the effects of drought stress on germination char- acteristics and water absorption characteristics. The results showed that the rate of seed water uptake,germination percentage,germination index,vigor index,seedling height,root length and plant water content decreased with the increase of concen- tration of PEG stress. However,seedling and root dry weight and root/shoot ratio ini- tially increased followed by a decrease. The lowest osmotic potential threshold was -0.42 MPa.
文摘[Objective] Abscisic acid (ABA), a plant endogenous hormone, plays an important role in plant responses to adverse environments. This study was to explore the effects of exogenous ABA on the drought resistmlce of apple rootstocks under simulated drought condition induced by polyethylene glycol (PEG). [Method] Apple (Malus baccata) seedlings were employed as test material. There were five treatments (T1-5) designed as ABA application rates at 0 (T1), 25 (T2), 50 (T3), 75 (T4) and 100 (T5) μmol/L in the hydroponic experiments. The changes of the relative leaf water content (RLWC), root activity, malondialdehyde (MDA) content, proline (Pro) content, superoxide dismutase (SOD) activity and peroxidase (POD) activity were assayed under PEG stress. All indices were analyzed by principal component analysis (PCA) to evaluate the optimal ABA concentration alleviating drought stress. [Result] The different concentration of ABA could increase Pro content and antioxidant enzyme activities, relieve the descent of RLWC and decrease MDA content. Low levels of ABA increased root activity, whereas the high concentrations (T3-T5) inhibited it. Statistical analysis based on the PCA indicated that the cumulative contribution rate of the first two principal components was raised to 96.457%, and the PCA in the T2 scored the highest. [Conclusion] The exogenous ABA could decrease the damage caused by drought stress to Malus baccata seedlings and enhance the ability of drought tolerance by increasing osmolyte content, anti- oxidative enzyme activity and reducing the level of membrane lipid peroxidation. The optimal concentration of ABA was 25 μmol/L.
文摘Chickpea (Cicer arietinum L.) is a crop cultivated in semi-arid and rainfed areas of Pakistan and it experiences terminal drought stress. In this paper, the morpho-anatomical study regarding roots of chickpea was carried out to investigate the drought adaptation strategies. Twelve cultivars of chickpea were grown in pots under drought stress of 70% and 35% field capacity in addition to control (100%). Root segments of mature chickpea plants were sectioned in 2 cm from root-shoot junction and used for making transverse sections. The development of sleeve and stele tissues and their proportion were markedly influenced by moisture availability to the root system. Roots length, flesh and dry weight, and number of secondary roots were decreased under field capacity of 70% and 35% as compared to control in 12 cultivars of chickpea. Root epidermis and cortex of CH47/04 consisted of cells with thickened walls and with 2-3 cell layers of sclerenchymatous cells below the epidermis. Increased number of medullary rays and high vascular region was observed in cultivars CH120/04, CH47/04, CH587/05 and CH87/02. Anatomical studies showed that CH47/04 was highly tolerant among 12 cultivars of chickpea, while CH587/05 and CH87/02 behaved moderately under both levels of drought stress (70% and 35% field capacity).
基金National Natural Science Foundation of China(41302289)the Natural Science Foundation of Guangxi(2014GXNSFBA118225)+1 种基金the Project of the China Geological Survey(12120113005300)the Ministry of Land and Resource(201211086-05)
文摘In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.
文摘Drought, flood, salinity, or a combination of these limits rice production. Several rice varieties are well known for their tolerance to specific abiotic stresses. We determined genetic relationship among 12 rice varieties including 9 tolerant to drought, flood, or salinity using inter-simple sequence repeat (ISSR) markers. Based on all markers, the nine tolerant varieties formed one cluster distinct from the cluster of three control varieties. The salt-tolerant varieties were closest to two flood-tolerant varieties, and together they were distinct from the drought-tolerant varieties. (GA)8YG was the most informative primer, showing the highest polymorphic information content (PIC) and resolving power (Rp). The drought-, flood-, and salt-tolerant varieties grouped in three distinct clusters within the group of tolerant varieties, when (GA)8YG was used. Sabita was the only exception. The two aus varieties, Nagina22 and FR13A, were separated and grouped with the drought- and flood-tolerant varieties, respectively, hut they were together in dendrograms based on other primers. The results show that ISSR markers associated with (GA)sYG delineated the three groups of stress-tolerant varieties from each other and can be used to identify genes/new alleles associated with the three abiotic stresses in rice germplasm.
基金supported by the Australian almond industry through Horticulture Innovation Australia Limited(Hort Innovation)using the almond industry research and development levy and funds from the Australian Government(AL13009)In-kind funding support from The Commonwealth Scientific and Industrial Research Organisation(CSIRO)is also gratefully acknowledged.
文摘Aims Predicting drought consequences on forests and fruit crop plantings requires improved understanding of drought responses of both leaf and fine-root resource acquisitive traits(specific leaf area—SLA,specific root surface area—SRA and specific root length—SRL).We hypothesize their responses are coordinated towards integrated plant resource conservation under severe drought.Methods We tested the hypothesis with a greenhouse-based drought experiment on saplings of six Prunus hybrids with a priori known contrasting drought sensitivity.Saplings were subjected to either control(100%field capacity)or severe drought stress treatment(33%evapotranspiration of hybrid-specific control plants).Sample collections were carried out at 30 and at 60 days after the start of treatments,for both control and stressed saplings.Important Findings No hybrid showed concurrent significant decrease of SLA and SRA(or SRL)under severe drought.The fine-root traits of the six hybrids showed two major drought-response scenarios,in particular:(i)increased root tissue density(RTD)and decreased average root diameter without significant change of SRL and(ii)increased RTD and decreased SRL without significant change of average root diameter.Drought responses of leaf gas exchange,SRA,SRL and RTD were closely correlated along a gradient towards resource conservation from control to drought-stressed plants in all hybrids,which was orthogonal to another gradient characterized by a hybrid-dependent decrease of SLA.These findings highlight(i)the multi-dimensionality of root-trait drought responses,(ii)the decoupling between leaf economics and leaf hydraulics and(iii)the covariation of leaf and root hydraulics in terms of trait drought responses.The study contributes to identifying the origin of the multi-dimensionality of root-trait drought response at intraspecific scale,and highlights differential drought–response combinations of leaf and fine-root traits among hybrids to survive under severe soil drought stress.
基金Dhikra Zayoud's stay in Valencia was supported by a grant from the Tunisian Ministry of Higher Education and Scientific Research.
文摘Aims The survival and ecological distribution of plants in arid habitats are mainly conditioned by water availability and physiological adaptations to withstand drought.In the present study,we have compared the physiological responses to drought of two Retama raetam(retama)subspecies from Tunisia,one of them living under the desert climate(subsp.raetam)and the other one growing on the coast(subsp.bovei).Methods To physiologically characterize the two R.raetam subspecies,and to elucidate their main mechanisms underlying their tolerance to drought stress,parameters related to seed germination,growth,photosynthesis(net photosynthetic rate,intracellular CO_(2) concentration,transpiration rate,stomatal conductance and water-use efficiency)and accumulation of osmolytes(proline,glycine betaine[GB]and soluble sugars)were determined in 4-month-old plants subjected to stress for up to 1 month.Important Findings Drought significantly inhibited germination,growth and all the evaluated photosynthetic parameters.Plants of R.raetam subsp.bovei were severely affected by drought after 3 weeks of treatment when photosynthesis rates were up to 7-fold lower than in the controls.At the same time,proline and GB significantly accumulated compared with the irrigated controls,but much less than in R.raetam subsp.raetam;in the latter subspecies,proline and GB increased to levels 24-and 6-fold higher,respectively,than in the corresponding controls.In summary,the population living in the desert region exhibited stronger tolerance to drought stress than that adapted to the semiarid littoral climate,suggesting that tolerance in R.raetam is dependent on accumulation of osmolytes.