Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the rol...An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.展开更多
Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recen...Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recently,the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications.However,the mechanical properties of peptide-based hydrogels are intrinsically weak.Therefore,it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels.In this review,we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels.In addition,we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability.These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials.It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues.More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.展开更多
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.
基金Project (No. 10372090) supported by the National Natural ScienceFoundation of China
文摘An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304156,11334004,91127026,31170813 and 11074115)China Postdoctoral Science Foundation(Grant No.2013M531312)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Program for New Century Excellent Talents in University
文摘Hydrogels are a class of special materials that contain a large amount of water and behave like rubber.These materials have found broad applications in tissue engineering,cell culturing,regenerative medicine etc.Recently,the exploration of peptide-based supramolecular hydrogels has greatly expanded the repertoire of hydrogels suitable for biomedical applications.However,the mechanical properties of peptide-based hydrogels are intrinsically weak.Therefore,it is crucial to develop methods that can improve the mechanical stability of such peptide-based hydrogels.In this review,we explore the factors that determine or influence the mechanical stability of peptide-based hydrogels and summarize several key elements that may guide scientists to achieve mechanically improved hydrogels.In addition,we exemplified several methods that have been successfully developed to prepare hydrogels with enhanced mechanical stability.These mechanically strong peptide-based hydrogels may find broad applications as novel biomaterials.It is still challenging to engineer hydrogels in order to mimic the mechanical properties of biological tissues.More hydrogel materials with optimal mechanical properties suitable for various types of biological applications will be available in the near future.