期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于串级LSTM深度学习模型的二次供水余氯预测方法
1
作者
肖磊
李中伟
+3 位作者
刘书明
陈春芳
吴雪
伍丽燕
《净水技术》
CAS
2024年第8期160-166,共7页
伴随着城市高层住宅的增多,住宅区内二次供水泵房数量迅速增加。由于二次供水水箱位于城市供水系统末端,水质安全引起社会广泛关注。为提升水箱水质,一些泵房引入自动补氯装置,然而传统自动控制方法在应对二次供水系统中长时间延迟和非...
伴随着城市高层住宅的增多,住宅区内二次供水泵房数量迅速增加。由于二次供水水箱位于城市供水系统末端,水质安全引起社会广泛关注。为提升水箱水质,一些泵房引入自动补氯装置,然而传统自动控制方法在应对二次供水系统中长时间延迟和非线性特性的补氯系统时存在局限性,仅能在线监测水箱余氯水平,过多的余氯可能对人体健康有害,因此,确保自动补氯系统安全运行成为亟待解决的问题。研究提出基于串级LSTM深度学习的神经网络模型,用于分析水箱余氯数据、准确预测水箱出水余氯浓度,并制定相应监测和控制策略。试验验证和实际应用结果表明,该深度学习模型能有效智能预测水箱余氯,为自动补氯系统提供重要的智能控制手段,具有实用意义。
展开更多
关键词
二次供水
水箱补氯
LSTM
深度学习
余
氯
预测
时间序列
串级网络模型
下载PDF
职称材料
题名
基于串级LSTM深度学习模型的二次供水余氯预测方法
1
作者
肖磊
李中伟
刘书明
陈春芳
吴雪
伍丽燕
机构
清华大学环境学院
常州通用自来水有限公司
出处
《净水技术》
CAS
2024年第8期160-166,共7页
基金
国家水体污染控制与治理科技重大专项(2017ZX07201002)。
文摘
伴随着城市高层住宅的增多,住宅区内二次供水泵房数量迅速增加。由于二次供水水箱位于城市供水系统末端,水质安全引起社会广泛关注。为提升水箱水质,一些泵房引入自动补氯装置,然而传统自动控制方法在应对二次供水系统中长时间延迟和非线性特性的补氯系统时存在局限性,仅能在线监测水箱余氯水平,过多的余氯可能对人体健康有害,因此,确保自动补氯系统安全运行成为亟待解决的问题。研究提出基于串级LSTM深度学习的神经网络模型,用于分析水箱余氯数据、准确预测水箱出水余氯浓度,并制定相应监测和控制策略。试验验证和实际应用结果表明,该深度学习模型能有效智能预测水箱余氯,为自动补氯系统提供重要的智能控制手段,具有实用意义。
关键词
二次供水
水箱补氯
LSTM
深度学习
余
氯
预测
时间序列
串级网络模型
Keywords
secondary water supply
water tank chlorination
LSTM deep learning
residual chlorine prediction
time series
cascade network model
分类号
TU991 [建筑科学—市政工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于串级LSTM深度学习模型的二次供水余氯预测方法
肖磊
李中伟
刘书明
陈春芳
吴雪
伍丽燕
《净水技术》
CAS
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部