目的分析2014-2018年河北省道路交通伤害死亡情况,探讨求和自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)在道路交通伤害死亡趋势预测中的可行性。方法采用描述流行病学分析2014-2018年河北省道路交通伤...目的分析2014-2018年河北省道路交通伤害死亡情况,探讨求和自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)在道路交通伤害死亡趋势预测中的可行性。方法采用描述流行病学分析2014-2018年河北省道路交通伤害死亡概况,运用R 3.5.3软件对河北省2014年1月―2018年6月道路交通伤害月度死亡资料建立ARIMA预测模型,进行整体回代观察拟合效果,比较2018年7月―12月预测值与真实值,评价预测效果。结果2014-2018年河北省累计报告道路交通伤害死亡人数13147例,男性10071例,女性3076例,年均死亡率为17.79/10万,总体呈现下降趋势。构建的最佳预测模型为ARIMA(0,1,1)(0,1,1)12,赤池信息量准则(Akaike information criterion,AIC)为390.64,Schwaz贝叶斯准则(Schwarz Bayesian criterion,SBC)为395.78;残差序列为白噪声序列(均有P>0.05),模型参数非零(均有P<0.05);预测结果实际值均落在预测值95%置信区间内,预测值与实际值之间的相对误差在1.15%~11.85%之间,RMSE=13.65,MAE=10.88,MAPE=4.80%,模型预测性能良好。结论河北省道路交通伤害死亡水平总体呈逐年下降趋势,ARIMA模型可用于道路交通伤害死亡趋势的短期预测。展开更多
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算...提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.展开更多
文摘目的分析2014-2018年河北省道路交通伤害死亡情况,探讨求和自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)在道路交通伤害死亡趋势预测中的可行性。方法采用描述流行病学分析2014-2018年河北省道路交通伤害死亡概况,运用R 3.5.3软件对河北省2014年1月―2018年6月道路交通伤害月度死亡资料建立ARIMA预测模型,进行整体回代观察拟合效果,比较2018年7月―12月预测值与真实值,评价预测效果。结果2014-2018年河北省累计报告道路交通伤害死亡人数13147例,男性10071例,女性3076例,年均死亡率为17.79/10万,总体呈现下降趋势。构建的最佳预测模型为ARIMA(0,1,1)(0,1,1)12,赤池信息量准则(Akaike information criterion,AIC)为390.64,Schwaz贝叶斯准则(Schwarz Bayesian criterion,SBC)为395.78;残差序列为白噪声序列(均有P>0.05),模型参数非零(均有P<0.05);预测结果实际值均落在预测值95%置信区间内,预测值与实际值之间的相对误差在1.15%~11.85%之间,RMSE=13.65,MAE=10.88,MAPE=4.80%,模型预测性能良好。结论河北省道路交通伤害死亡水平总体呈逐年下降趋势,ARIMA模型可用于道路交通伤害死亡趋势的短期预测。
文摘传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。
文摘提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征.