Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among ...Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.展开更多
文摘Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.