In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzi...In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problezns during the process of heating. Moreover, an instru-ment for measuring wetness of wet steam flow was designed and made out. This instrument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal TUrbine Laboratory Xi’an Jiaotong University. By analyzing the relative error of the result, it was found that this instrument has fairly high accuracy it can be used as the prototype of practical instrument and has an important applicable value in engineering.展开更多
A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the num...A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.展开更多
Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equ...Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.展开更多
文摘In this paper, an improvement of heating method for measuring wetness of the flowing wet steam is developed, the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problezns during the process of heating. Moreover, an instru-ment for measuring wetness of wet steam flow was designed and made out. This instrument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal TUrbine Laboratory Xi’an Jiaotong University. By analyzing the relative error of the result, it was found that this instrument has fairly high accuracy it can be used as the prototype of practical instrument and has an important applicable value in engineering.
基金support for this work by the fundamental research funds for the Cen-tral Universities (Grant No. HIT. NSRIF. 201173)
文摘A new dual-fluid model considering phase ansition and velocity slip was proposed in this paper and the Cunningham correction was used in the droplet resistance calculation. This dual-fluid model was applied to the numerical simulations of wet steam flow in a 2D LAVAL nozzle and in the White cascade respectively. The results of two simulations demonstrate that the model is reliable. Meanwhile, the spontaneous condensing flow in White cascade was analyzed and it infers that the irreversible loss caused by condensation accounts for the largest share (about 8.78% of inlet total pressure) in total pressure loss while the loss caused by velocity slip takes the smallest share (nearly 0.42%), and another part of total pressure loss caused by pneumatic factors contributes a less share than condensation, i.e. almost 3.95% of inlet total pressure.
文摘Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.