期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
综合兼顾流域因子的云南省星云湖健康评价 被引量:1
1
作者 袁玲 甘淑 +1 位作者 杨明龙 余莉 《水土保持通报》 CSCD 2017年第6期220-224,共5页
[目的]以云南省星云湖为例,尝试兼顾流域因子进行湖泊健康评价,以期为滇中高原湖泊健康评价提供示范和指导作用。[方法]在面向湖泊环境驱动因素调查分析基础上,考虑了来自于流域方面驱动因素对湖泊环境的影响,构建兼顾流域因子的云南省... [目的]以云南省星云湖为例,尝试兼顾流域因子进行湖泊健康评价,以期为滇中高原湖泊健康评价提供示范和指导作用。[方法]在面向湖泊环境驱动因素调查分析基础上,考虑了来自于流域方面驱动因素对湖泊环境的影响,构建兼顾流域因子的云南省星云湖健康评价的修正指标体系,综合利用遥感与GIS技术,对星云湖的健康状况进行具体量化评价与特性分析。[结果]获得了星云湖在水文水资源、湖泊物理结构、水质、生物和社会服务功能等5个准则层下各指标的量化评价分值;星云湖的健康状况一般,主要制约条件依次是水质、生物、水文水资源的健康状况不理想。[结论]兼顾流域因子的评价方法,在一定程度上改进了目前滇中高原湖泊生态系统健康评价中普遍存在的"就湖评湖"所存在的空间局限,以及由此对相关驱动指标考虑不足的问题;综合兼顾了流域因子的星云湖案例研究,可为滇中高原区域其他湖泊健康评价提供技术路线与评价方法。 展开更多
关键词 湖泊健康 流域影响因素 指标体系 评价分析 星云湖
下载PDF
Runoff Change of Naoli River in Northeast China in 1955–2009 and Its Influencing Factors 被引量:1
2
作者 SONG Xiaolin LU Xianguo +1 位作者 LIU Zhengmao SUN Yonghe 《Chinese Geographical Science》 SCIE CSCD 2012年第2期144-153,共10页
Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 ... Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 for Bao′an station, from 1955 to 2009 for Baoqing station, from 1956 to 2009 for Caizuizi station and from 1978 to 2009 for Hongqiling station. The influences of climate change and human activities on runoff change were investigated, and the causes of hydrological regime change were revealed. The seasonal runoff distribution of the Naoli River was extremely uneven, and the annual change was great. Overall, the annual runoff showed a significant decreasing trend. The annual runoff of Bao′an, Baoqing, and Caizuizi stations in 2009 decreased by 64.1%, 76.3%, and 84.3%, respectively, compared with their beginning data recorded. The wet and dry years of the Naoli River have changed in the study period. The frequency of wet year occurrence decreased and lasted longer, whereas that of dry year occurrence increased. The frequency of dry year occurrence increased from 25.0%-27.8% to 83.9%-87.5%. The years before the 1970s were mostly wet, whereas those after the 1970s were mostly dry. Precipitation reduction and land use changes contributed to the decrease in annual runoff. Rising temperature and water project construction have also contributed important effects on the runoff change of the Naoli River. 展开更多
关键词 runoff change hydrological parameters WETLAND land use human activities Naoli River
下载PDF
Denitrification Rates and Their Controlling Factors in Streams of the Han River Basin with Different Land-Use Patterns 被引量:1
3
作者 S.P.JUNG Y.J.KIM H.KANG 《Pedosphere》 SCIE CAS CSCD 2014年第4期516-528,共13页
Land-use patterns can affect various nutrient cycles in stream ecosystems, but little information is available about the effects of urban development on denitrification processes at the watershed scale. In the present... Land-use patterns can affect various nutrient cycles in stream ecosystems, but little information is available about the effects of urban development on denitrification processes at the watershed scale. In the presented study, we investigated the controlling factors of denitrification rates within the streams of the Han River Basin, Korea, with different land-use patterns, in order to enhance the effectiveness of water resource management strategies. Ten watersheds were classified into three land-use patterns (forest, agriculture and urban) using satellite images and geographic information system techniques, and in-situ denitrification rates were determined using an acetylene blocking method. Additionally, sediment samples were collected from each stream to analyze denitrifier communities and abundance using molecular approaches. In-situ denitrification rates were found to be in the order of agricultural streams (289.6 mg N20-N m-2 d-1) 〉 urban streams (157.0 mg N20-N m-2 d-1) 〉 forested streams (41.9 mg N20-N m-2 d-l). In contrast, the average quantity of denitrifying genes was the lowest in the urban streams. Genetic diversity of denitrifying genes was not affected by watershed land-use pattern, but exhibited stream-dependent pattern. More significance factors were involved in denitrification in the sites with higher denitrification rates. Multiple linear regression analysis revealed that clay, dissolved organic carbon and water contents were the main factors controlling denitrification rate in the agricultural streams, while dissolved organic carbon was the main controlling factor in the urban streams. In contrast, temperature appeared to be the main controlling factor in the forested streams. 展开更多
关键词 denitrifier communities denitrifying genes nutrient cycle stream ecosystem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部