自1957年戈特曼发表《Megalopolis:the Urbanization of the Northeastern Seaboard》的论文以来,理论界对"Megalopolis"开展了大量研究,并且用不同的名称指代这类区域。与国内许多学者一样,本文将这类区域称为"城市群&q...自1957年戈特曼发表《Megalopolis:the Urbanization of the Northeastern Seaboard》的论文以来,理论界对"Megalopolis"开展了大量研究,并且用不同的名称指代这类区域。与国内许多学者一样,本文将这类区域称为"城市群"。由于学术界对城市群的界定标准不统一,对相关理论研究以及实践工作都造成了许多困扰。本文认为遵循"城市都市区城市群"的演进理论,正本清源,在分析城市、都市区等的界定标准、界定标准需要的基本要素的基础上,探讨城市群的界定标准,以期为标准的界定提供思路。展开更多
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic med...Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.展开更多
The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul...The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.展开更多
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly...We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.展开更多
The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anem...The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.展开更多
It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with d...It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with dump is introduced in the letter, numerical analysis is carried out by four-order Runge-Kutta method. An oscillator array is designed according to the frequency of the ultrasonic wave. When the external signals are inputted, computational algorithm is used to scan the array in turn and analyze the result, and the frequency can be determined. Based on the methods above, detecting the carotid blood flow speed accurately is realized. The Signal-to-Noise Ratio (SNR) of-20.23dB is obtained by the result of experiments. In conclusion, the SNR has been improved and the precision of the measured bloodstream speed has been increased, which can be 0.069% to 0.13%.展开更多
In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set o...In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.展开更多
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina...Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.展开更多
AIM:To evaluate the predictive value of preoperative predictors for portal vein thrombosis(PVT)after splenectomy with periesophagogastric devascularization.METHODS:In this prospective study,69 continuous patients with...AIM:To evaluate the predictive value of preoperative predictors for portal vein thrombosis(PVT)after splenectomy with periesophagogastric devascularization.METHODS:In this prospective study,69 continuous patients with portal hypertension caused by hepatitis B cirrhosis underwent splenectomy with periesophagogastric devascularization in West China Hospital of Sichuan University from January 2007 to August 2010.The portal vein flow velocity and the diameter of portal vein were measured by Doppler sonography.The hepatic congestion index and the ratio of velocity and diameter were calculated before operation.The prothrombin time(PT)and platelet(PLT)levels were measured before and after operation.The patients'spleens were weighed postoperatively.RESULTS:The diameter of portal vein was negatively correlated with the portal vein flow velocity(P<0.05).Thirty-three cases(47.83%)suffered from postoperative PVT.There was no statistically significant difference in the Child-Pugh score,the spleen weights,the PT,or PLT levels between patients with PVT and without PVT.Receiver operating characteristic curves showed four variables(portal vein flow velocity,the ratio of velocity and diameter,hepatic congestion index and diameter of portal vein)could be used as preoperative predictors of postoperative portal vein thrombosis.The respective values of the area under the curve were 0.865,0.893,0.884 and 0.742,and the respective cut-off values(24.45 cm/s,19.4333/s,0.1138 cm/s-1 and 13.5 mm) were of diagnostically efficient,generating sensitivity values of 87.9%,93.9%,87.9%and 81.8%,respectively,specificities of 75%,77.8%,86.1%and 63.9%,respectively.CONCLUSION:The ratio of velocity and diameter was the most accurate preoperative predictor of portal vein thrombosis after splenectomy with periesophagogastric devascularization in hepatitis B cirrhosis-related portal hypertension.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-l...Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.展开更多
In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fl...In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fluxes are sensitive to observation errors, increasing the error of model calculation; In contrast, the latent heat flux and momentum flux are not as sensitive to observation errors as the sensible heat, and their calculated results are reliable. The test result also verifies the rationality of the surface flux values calculated and the conclusions can be used to detect errors in observed data.展开更多
A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperatu...A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperature flow tester. Dynamic viscosities of the blends at different temperatures and different shear rates were measured on a rotary rheometer. The crystal morphologies of biodiesel blends at low temperatures were analyzed using a polarizing microscope. The results indicated that blended fuels demonstrated slight decrease in PPs and CFPPs as compared with those of neat soybean oil derived biodiesel and pure petrodiesel. Below the temperatures of PPs or CFPPs, the dynamic viscosity of biodiesel blends dramatically increased with a decreasing temperature, but decreased with an increasing shear rate, so that biodiesel blends exhibited non-Newtonian behavior. At temperatures higher than PPs or CFPPs, a linear relationship appeared between the dynamic viscosity and shear rate and biodiesel blends became Newtonian fluids. At low temperatures, wax crystals of biodiesel blends grew and agglomerated rapidly. Loss of fluidity for biodiesel blends at low temperatures could therefore be attributed on one hand to the sharp increase of viscosity and on the other hand to the rapid growth and agglomeration of wax crystals.展开更多
The purpose of this paper is to give a sufficient and necessary condition of totally geodesic on invariant submanifold of contact metric manifold and is to generalize the results in [3] and [4].
文摘自1957年戈特曼发表《Megalopolis:the Urbanization of the Northeastern Seaboard》的论文以来,理论界对"Megalopolis"开展了大量研究,并且用不同的名称指代这类区域。与国内许多学者一样,本文将这类区域称为"城市群"。由于学术界对城市群的界定标准不统一,对相关理论研究以及实践工作都造成了许多困扰。本文认为遵循"城市都市区城市群"的演进理论,正本清源,在分析城市、都市区等的界定标准、界定标准需要的基本要素的基础上,探讨城市群的界定标准,以期为标准的界定提供思路。
基金supported by the National Natural Science Foundation of China(No.41004054)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2011ZX05023-005-010)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20105122120002)supported by the Cultivating Program of Middle-aged Backbone Teachers of Chengdu University of Technology and the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(Grang No.KYTD201002)
文摘Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.
文摘The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared.
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.
基金supported by the National Natural Science Foundation of China(Grant No.4087404741174084)
文摘We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.
文摘The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.
基金Supported by the National Natural Science Foundation of China (No.60102002)the Huoyingdong Education Foundation (No.81057)the Doctoral Foundation of Hebei Province of China(No.B2004522).
文摘It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with dump is introduced in the letter, numerical analysis is carried out by four-order Runge-Kutta method. An oscillator array is designed according to the frequency of the ultrasonic wave. When the external signals are inputted, computational algorithm is used to scan the array in turn and analyze the result, and the frequency can be determined. Based on the methods above, detecting the carotid blood flow speed accurately is realized. The Signal-to-Noise Ratio (SNR) of-20.23dB is obtained by the result of experiments. In conclusion, the SNR has been improved and the precision of the measured bloodstream speed has been increased, which can be 0.069% to 0.13%.
基金supported by the Civil Aviation Safety Capacity Building Project.
文摘In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability.
基金National Natural Science Foundation of China(No.71961016)Planning Fund for the Humanities and Social Sciences of the Ministry of Education(Nos.15XJAZH002,18YJAZH148)Natural Science Foundation of Gansu Province(No.18JR3RA125)。
文摘Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.
基金Supported by Grants from the Sichuan Provincial scientific and technological supported project,No.2009sz0172
文摘AIM:To evaluate the predictive value of preoperative predictors for portal vein thrombosis(PVT)after splenectomy with periesophagogastric devascularization.METHODS:In this prospective study,69 continuous patients with portal hypertension caused by hepatitis B cirrhosis underwent splenectomy with periesophagogastric devascularization in West China Hospital of Sichuan University from January 2007 to August 2010.The portal vein flow velocity and the diameter of portal vein were measured by Doppler sonography.The hepatic congestion index and the ratio of velocity and diameter were calculated before operation.The prothrombin time(PT)and platelet(PLT)levels were measured before and after operation.The patients'spleens were weighed postoperatively.RESULTS:The diameter of portal vein was negatively correlated with the portal vein flow velocity(P<0.05).Thirty-three cases(47.83%)suffered from postoperative PVT.There was no statistically significant difference in the Child-Pugh score,the spleen weights,the PT,or PLT levels between patients with PVT and without PVT.Receiver operating characteristic curves showed four variables(portal vein flow velocity,the ratio of velocity and diameter,hepatic congestion index and diameter of portal vein)could be used as preoperative predictors of postoperative portal vein thrombosis.The respective values of the area under the curve were 0.865,0.893,0.884 and 0.742,and the respective cut-off values(24.45 cm/s,19.4333/s,0.1138 cm/s-1 and 13.5 mm) were of diagnostically efficient,generating sensitivity values of 87.9%,93.9%,87.9%and 81.8%,respectively,specificities of 75%,77.8%,86.1%and 63.9%,respectively.CONCLUSION:The ratio of velocity and diameter was the most accurate preoperative predictor of portal vein thrombosis after splenectomy with periesophagogastric devascularization in hepatitis B cirrhosis-related portal hypertension.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
文摘Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
基金Key project in the Natural Science Foundation of China (40136010) Natural Science Foundation of China (40075003)
文摘In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fluxes are sensitive to observation errors, increasing the error of model calculation; In contrast, the latent heat flux and momentum flux are not as sensitive to observation errors as the sensible heat, and their calculated results are reliable. The test result also verifies the rationality of the surface flux values calculated and the conclusions can be used to detect errors in observed data.
基金the financial support of the Natural Science Foundation of Chongqing(project No.CSTC2006BA6031)the Program for New Century Excellent Talents in Chinese Universities(project No.NCET-04-1002)
文摘A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperature flow tester. Dynamic viscosities of the blends at different temperatures and different shear rates were measured on a rotary rheometer. The crystal morphologies of biodiesel blends at low temperatures were analyzed using a polarizing microscope. The results indicated that blended fuels demonstrated slight decrease in PPs and CFPPs as compared with those of neat soybean oil derived biodiesel and pure petrodiesel. Below the temperatures of PPs or CFPPs, the dynamic viscosity of biodiesel blends dramatically increased with a decreasing temperature, but decreased with an increasing shear rate, so that biodiesel blends exhibited non-Newtonian behavior. At temperatures higher than PPs or CFPPs, a linear relationship appeared between the dynamic viscosity and shear rate and biodiesel blends became Newtonian fluids. At low temperatures, wax crystals of biodiesel blends grew and agglomerated rapidly. Loss of fluidity for biodiesel blends at low temperatures could therefore be attributed on one hand to the sharp increase of viscosity and on the other hand to the rapid growth and agglomeration of wax crystals.
文摘The purpose of this paper is to give a sufficient and necessary condition of totally geodesic on invariant submanifold of contact metric manifold and is to generalize the results in [3] and [4].