本文分析得到温度升高会影响超声波声速,并且流场的复杂性使流量测量准确性下降。实际气体超声波流量计安装环境下流体通常处于湍流状态,借助COMSOL软件仿真通过对弯管设置以及流量计前方直管段长度的改变,分析得出前置弯管结构是影响...本文分析得到温度升高会影响超声波声速,并且流场的复杂性使流量测量准确性下降。实际气体超声波流量计安装环境下流体通常处于湍流状态,借助COMSOL软件仿真通过对弯管设置以及流量计前方直管段长度的改变,分析得出前置弯管结构是影响流场分布的主要原因。本研究对于优化超声流量测量技术、提升工业生产和能源计量领域的测量水平具有重要意义。In this paper, it is discovered that the rise in temperature will affect the ultrasonic velocity, and the complexity of the flow field will decrease the accuracy of the flow measurement. In the actual installation environment of gas ultrasonic flowmeters, the fluid is typically in a turbulent state. Through the simulation using COMSOL software, it is analyzed that the front bending structure is the primary factor influencing the flow field distribution via the alteration of the bending pipe setting and the length of the straight pipe section in front of the flowmeter. This study holds significant importance for optimizing ultrasonic flow measurement technology and enhancing the measurement level in industrial production and energy measurement.展开更多
文摘本文分析得到温度升高会影响超声波声速,并且流场的复杂性使流量测量准确性下降。实际气体超声波流量计安装环境下流体通常处于湍流状态,借助COMSOL软件仿真通过对弯管设置以及流量计前方直管段长度的改变,分析得出前置弯管结构是影响流场分布的主要原因。本研究对于优化超声流量测量技术、提升工业生产和能源计量领域的测量水平具有重要意义。In this paper, it is discovered that the rise in temperature will affect the ultrasonic velocity, and the complexity of the flow field will decrease the accuracy of the flow measurement. In the actual installation environment of gas ultrasonic flowmeters, the fluid is typically in a turbulent state. Through the simulation using COMSOL software, it is analyzed that the front bending structure is the primary factor influencing the flow field distribution via the alteration of the bending pipe setting and the length of the straight pipe section in front of the flowmeter. This study holds significant importance for optimizing ultrasonic flow measurement technology and enhancing the measurement level in industrial production and energy measurement.