To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i...To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.展开更多
A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulat...A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
A kind of closed-loop Hall effect sensor is designed and fabricated by considering several factors such as iron core material, Hall device, as well as selected integrated circuit. Through studying the effect of the ir...A kind of closed-loop Hall effect sensor is designed and fabricated by considering several factors such as iron core material, Hall device, as well as selected integrated circuit. Through studying the effect of the iron material and structures of current sensor, a kind of optimal Hall effect current sensor is found. The experimental results show that the presented closed-loop Hall effect current sensor achieves 1 mA/A sensitivity. And its lineafity and accuracy are 0.1% and 0.35% FS, respectively, at cur- rents ranging from 0 to 50 A.展开更多
基金Project(200801346) supported by the China Postdoctoral Science FoundationProject(2008RS4022) supported by the Hunan Postdoctoral Scientific ProgramProject(2008) supported by the Postdoctoral Science Foundation of Central South University
文摘To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.
基金The National Natural Science Foundation of China(No.62173122)the Hebei Key Project of Natural Science Foundation(No.F2021201031)。
文摘A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB309504)the National Key Project of Semiconductor Equipment(02)(Grant No.2009ZX02037)
文摘A kind of closed-loop Hall effect sensor is designed and fabricated by considering several factors such as iron core material, Hall device, as well as selected integrated circuit. Through studying the effect of the iron material and structures of current sensor, a kind of optimal Hall effect current sensor is found. The experimental results show that the presented closed-loop Hall effect current sensor achieves 1 mA/A sensitivity. And its lineafity and accuracy are 0.1% and 0.35% FS, respectively, at cur- rents ranging from 0 to 50 A.