期刊文献+
共找到1,347篇文章
< 1 2 68 >
每页显示 20 50 100
基于PSO-LSTM的短时交通流量预测网站设计 被引量:1
1
作者 王宁 成利敏 +1 位作者 甄景涛 段晓霞 《廊坊师范学院学报(自然科学版)》 2024年第1期29-32,共4页
短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预... 短时交通流量预测是智能交通系统中的重要环节,选用在短时交通流量预测方面表现出色的LSTM神经网络,并利用PSO算法优化LSTM神经网络模型。实验结果表明,与传统LSTM模型相比,所构建的PSO-LSTM模型对未来5分钟和10分钟两种短时交通流量预测,达到了更高的准确率。在此基础上,设计了一个交通流量预测网站更好地展示了预测结果,也方便用户随时查询。 展开更多
关键词 智能交通系统 短时交通流量预测 LSTM神经网络 PSO算法 交通流量预测网站
下载PDF
考虑车道间差异和上下游断面关联的快速路交通流量预测方法
2
作者 李春 张存保 +1 位作者 陈峰 符鼎俊 《交通信息与安全》 CSCD 北大核心 2024年第4期102-109,共8页
在现有的交通流量预测研究中,并未充分考虑断面道路内不同车道间的交通流量差异性以及上下游断面交通流量相关性。研究了结合主成分分析法(principal component analysis,PCA)与长短期记忆神经网络(long short-term memory,LSTM)的快速... 在现有的交通流量预测研究中,并未充分考虑断面道路内不同车道间的交通流量差异性以及上下游断面交通流量相关性。研究了结合主成分分析法(principal component analysis,PCA)与长短期记忆神经网络(long short-term memory,LSTM)的快速路交通流量预测框架,可以满足智能网联技术实时性和准确性的需求。收集城市快速路的交通流量数据,应用快速傅里叶变换方法(fast fourier transform,FFT)进行数据预处理,以提高原始数据的可预测性能;通过PCA方法对车道间的横向及纵向交通流量进行特征融合,建立车道间交通流量的关联性数据,以降低数据维度;并将关联性数据融入到LSTM模型中,进行车道级交通流量预测并汇总其预测结果,得到断面交通流量的预测值。选取武汉市三环线上的城市快速路卡口检测数据对本文方法进行验证。结果表明:考虑车道间差异和上下游断面关联的模型能够提高断面交通流量的预测精度,相较于仅考虑时间特征的断面交通流量预测结果,平均绝对误差、均方根误差和平均绝对百分比误差分别能降低6.66%,6.23%,17.51%;与单独考虑上下游断面关联性或者车道间差异的断面交通流量预测结果相比均具有更好的预测效果,在平均绝对误差、均方根误差和平均绝对百分比误差上的优化幅度,最低可降低1.53%,最高可降低12.88%;此外,所提的模型相较于支持向量机回归(support vector regression,SVR)和随机森林(random forest,RF)算法具有更高的预测精度;并且在分时段预测中,在晚高峰和平峰时段预测精度表现更佳。 展开更多
关键词 城市交通 交通流量预测 深度学习 主成分分析 车道间差异
下载PDF
基于循环独立机制的交通流量预测
3
作者 温雯 江建强 +1 位作者 蔡瑞初 郝志峰 《广东工业大学学报》 CAS 2024年第1期86-92,共7页
交通流量预测是智能交通控制和管理系统的一个重要环节,但交通流量数据具有时间和空间上的非线性和复杂性等特征,为对其进行精准预测,本文提出了Graph Temopral Recurrent Independent Mechanisms (G-tRIM)模型。该模型使用图注意力网络... 交通流量预测是智能交通控制和管理系统的一个重要环节,但交通流量数据具有时间和空间上的非线性和复杂性等特征,为对其进行精准预测,本文提出了Graph Temopral Recurrent Independent Mechanisms (G-tRIM)模型。该模型使用图注意力网络(Graph Attention Networks, GAT)来有效捕获交通流量数据的空间依赖关系,使用循环独立机制(Recurrent Independent Mechanisms, RIM)来精准刻画交通流量数据的潜在状态。最后在北京和贵州数据集上,以均方误差(Mean Square Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)为指标进行实验,结果表明,G-tRIM在各个数据集上的表现均优于基准模型。 展开更多
关键词 交通流量预测 图注意力网络 循环独立机制
下载PDF
基于时域划分的网络流量预测方法
4
作者 夏明山 王丽 《计算机应用》 CSCD 北大核心 2024年第S01期183-187,共5页
网络流量的预测一般通过建立相应的分析模型分析时序序列的发展过程及趋势,缺乏对网络流量波动空间和周期特征的分析,无法对短时突变流量及短周期流量进行精准预测。为了提高网络流量的预测效果,提出一种基于时域特征分析的网络流量预... 网络流量的预测一般通过建立相应的分析模型分析时序序列的发展过程及趋势,缺乏对网络流量波动空间和周期特征的分析,无法对短时突变流量及短周期流量进行精准预测。为了提高网络流量的预测效果,提出一种基于时域特征分析的网络流量预测方法。该方法通过分析网络流量的周期特征,建立时域划分模型,使具有相同趋势及波动空间的网络流量重组,突出短时突变流量和周期趋势特征,增强数据规律,以提高网络流量预测精度。选取反向传播(BP)神经网络、长短期记忆(LSTM)神经网络及小波神经网络(WNN)模型,采用均方误差(MSE)作为衡量标准,分别验证时域划分模式和全时域模式网络流量预测效果。结果表明,时域划分模式时BP神经网络和WNN的MSE相比全时域模式更低,其中时域划分模式BP神经网络的MSE降低为全时域模式时的1/24,说明通过分析网络流量数据建立的时域划分模型能够提高网络流量预测性能,为大规模互联网环境下的网络流量预测分析提供一种分而治之的方法。 展开更多
关键词 网络流量预测 特征分析 流量重组 时域划分 神经网络
下载PDF
相空间重构与改进SMA优化SVR的网络流量预测
5
作者 董洁 韩子扬 《计算机工程与设计》 北大核心 2024年第9期2796-2804,共9页
为提高网络流量预测精度,提出结合相空间重构与改进黏菌优化支持向量回归的预测模型。为解决黏菌算法收敛慢、易得局部最优的不足,引入3种形态对立学习对种群进行初始化,提高种群多样性;利用非线性反馈因子更新机制,均衡全局搜索与局部... 为提高网络流量预测精度,提出结合相空间重构与改进黏菌优化支持向量回归的预测模型。为解决黏菌算法收敛慢、易得局部最优的不足,引入3种形态对立学习对种群进行初始化,提高种群多样性;利用非线性反馈因子更新机制,均衡全局搜索与局部开发;设计柯西-高斯混合变异对最优解变异,扩展搜索空间,避免陷入局部最优。利用改进黏菌算法对支持向量回归优化调参,有效解决超参初值敏感缺陷,提高学习精度和收敛速度,以此构建网络流量预测模型。实验结果表明,改进模型预测误差更小,能够实现高精度和实时性预测要求。 展开更多
关键词 网络流量预测 黏菌算法 支持向量机 对立学习 混合变异 相空间重构 预测误差
下载PDF
基于卷积长短时记忆网络的短时公交客流量预测
6
作者 陈静 张昭冲 +2 位作者 王琳凯 安脉 王伟 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期476-486,共11页
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔... 针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 展开更多
关键词 卷积神经网络 长短时记忆网络 时空数据预测 K-MEANS聚类 流量预测
原文传递
融合多种模态特征的井下供水管网流量预测
7
作者 赵安新 刘鼎 +2 位作者 郭仕林 战仕发 陈志刚 《煤炭工程》 北大核心 2024年第2期24-30,共7页
煤矿井下供水系统是煤矿安全生产的生命线,供水管网水流量的预测是供水系统优化调度的基础,预测的重要性对供水调度有重要影响。文章提出了一种融合多模态数据特征的煤矿井下供水管网流量预测方法,该方法通过图深度学习的方法实现了对... 煤矿井下供水系统是煤矿安全生产的生命线,供水管网水流量的预测是供水系统优化调度的基础,预测的重要性对供水调度有重要影响。文章提出了一种融合多模态数据特征的煤矿井下供水管网流量预测方法,该方法通过图深度学习的方法实现了对井下管网空间拓扑结构、历史时间依赖、井下实际生产工况、周期相关等多种数据模态特征的融合,具体的,使用添加空间注意机制的图卷积神经网络获取井下管网监测点的空间拓扑关系,然后利用循环神经网络中的门控循环单元获取监测点的时间依赖,并融合煤矿生产规律与不同周期的流量数据形成最终预测结果,通过陕西亭南煤矿实际数据进行实验,结果表明,提出的预测方法相较于SVM、LSTM、STGCN等方法能更准确地预测井下流量未来的趋势,预测偏差分别降低了9.3%、6.84%和3.65%。 展开更多
关键词 煤矿井下 供水管网 图神经网络 深度学习 流量预测
下载PDF
基于改进小波神经网络的实时系统任务流量预测方法
8
作者 李丹 陈勃琛 潘广泽 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期208-214,共7页
针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小... 针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小波预测模型关键参数进行优化,避免陷入局部最优解,最终构建一种人工鱼群算法改进的小波神经网络任务流量预测系统。利用提出的预测模型开展实时任务流量预测对比仿真实验,实验结果表明,建立的基于改进小波神经网络的实时系统任务流量预测系统对非周期实时任务具有较高的预测精度,预测效果优于原始小波神经网络模型及T-S模糊神经网络模型。 展开更多
关键词 小波神经网络 人工鱼群算法 实时系统 流量预测
下载PDF
基于ARIMAX的区域飞行流量预测模型研究
9
作者 唐卫贞 田齐齐 黄洲升 《电子设计工程》 2024年第21期8-12,共5页
随着航空业的迅速发展,航空公司、机场管理和空中交通管制对精确预测飞行流量的需求迅速增加,为此提出了基于自回归移动平均外生变量(ARIMAX)的区域飞行流量预测模型。通过分析广播式自动相关监视(ADS-B)数据,在自回归移动平均模型(ARI... 随着航空业的迅速发展,航空公司、机场管理和空中交通管制对精确预测飞行流量的需求迅速增加,为此提出了基于自回归移动平均外生变量(ARIMAX)的区域飞行流量预测模型。通过分析广播式自动相关监视(ADS-B)数据,在自回归移动平均模型(ARIMA)的基础上引入航空器飞行距离间隔作为外生变量构建预测模型,将ARIMAX与LSTM、ARIMA的预测结果进行均方根误差(RMSE)及平均绝对百分比误差(MAPE)比较,由实验结果可知,该模型预测结果的RMSE及MAPE较LSTM分别降低了21.3架及1.2%,较ARIMA分别降低了29.9架及2.4%。 展开更多
关键词 流量预测 ARIMAX 外生变量 ADS-B数据 误差分析
下载PDF
考虑交通流量预测的光−氢−电耦合系统规划
10
作者 王辉 梁凌 +1 位作者 李乃慧 陈攀 《现代电力》 北大核心 2024年第6期1100-1108,共9页
为解决制氢、加氢站建设成本高、氢燃料汽车加氢具有不确定性特点等问题,提出一种考虑交通流量预测的光−氢−电耦合系统规划模型。首先,建立包含氢气生产、压缩和储存并通过充氢装置注入至氢燃料电池汽车内的现场制氢模型;其次,提出交通... 为解决制氢、加氢站建设成本高、氢燃料汽车加氢具有不确定性特点等问题,提出一种考虑交通流量预测的光−氢−电耦合系统规划模型。首先,建立包含氢气生产、压缩和储存并通过充氢装置注入至氢燃料电池汽车内的现场制氢模型;其次,提出交通流量的预测方法,为制氢、加氢站系统建模和运行提供支持;最后,以最小化成本为目标,构建考虑交通流量预测的光−氢−电耦合系统规划模型,然后以IEEE30标准算例,以30路网节点为算例分析系统,研究发现制氢、加氢站联合光伏电站有利于降低系统成本;制氢补贴政策的实施使氢气需求增加28%,制氢、加氢站数量增加20%;电解槽制氢量快速响应峰谷分时电价变化。结果表明所提模型具有有效性。 展开更多
关键词 制氢、加氢站 交通流量预测 氢燃料电池汽车 光伏电站
原文传递
基于CNN-BiLSTM的油田注水流量预测
11
作者 李艳辉 吕行 《吉林大学学报(信息科学版)》 CAS 2024年第4期625-631,共7页
针对深度学习中的RNN(Recurrent Neural Networks)常用于时间序列预测,但其存在难以对历史序列进行特征提取、以及无法突出关键信息的影响且时间序列过长时早期信息易丢失等问题,提出一种基于双重注意力机制CNN(Convolutional Neural Ne... 针对深度学习中的RNN(Recurrent Neural Networks)常用于时间序列预测,但其存在难以对历史序列进行特征提取、以及无法突出关键信息的影响且时间序列过长时早期信息易丢失等问题,提出一种基于双重注意力机制CNN(Convolutional Neural Networks)-BiLSTM(Bi-directional Long Short-Term Memory)的油田注水流量预测方法。该方法以油田历史注水数据为输入,利用CNN层提取历史注水数据特征,并引入特征注意力机制层,通过计算权重值的方式为特征赋予相应权重,使关键特征更容易得到较大权重,进而对预测结果产生影响;BiLSTM层对数据进行时序建模,并引入时间步注意力机制,通过选取关键时间步并突出该时间步的隐藏状态表达,使早期隐藏状态不会随时间消失,能提升模型对长时间序列的预测效果,最后完成流量预测。以公开数据集和中国南部某地区油田注水数据为算例,并与MLP(Multilayer Perceptron)、GRU(Gate Recurrent Unit)、LSTM(Long Short-Term Memory)、BiLSTM,CNN进行对比,证明该方法在油田注水流量预测中精度更高,可帮助油田制定生产计划、减少资源浪费以及提高注采率,具有一定的实际工程应用价值。 展开更多
关键词 流量预测 卷积神经网络 长短期记忆神经网络 注意力机制
下载PDF
基于改进LSTM的城市轨道短时流量预测研究
12
作者 魏化永 李建华 《太原学院学报(自然科学版)》 2024年第4期49-55,共7页
针对LSTM应用于城市轨道短时流量预测存在的模型参数确定困难、对预测精度影响大的问题,采用改进的BA算法对模型参数进行优化。对传统BA算法,采用自适应策略来动态调整脉冲频率和蝙蝠速率,同时蝙蝠位置更新模型中引入随机扰动项,提高了B... 针对LSTM应用于城市轨道短时流量预测存在的模型参数确定困难、对预测精度影响大的问题,采用改进的BA算法对模型参数进行优化。对传统BA算法,采用自适应策略来动态调整脉冲频率和蝙蝠速率,同时蝙蝠位置更新模型中引入随机扰动项,提高了BA的优化性能。采用BA对LSTM参数进行优化,提出了基于改进LSTM的城市轨道短时流量预测模型。将提出的模型应用于郑州地铁1号线,通过和BP神经网络预测模型、LSTM预测模型的对比,验证了所提出的改进LSTM预测模型具有更高的预测精度。 展开更多
关键词 改进蝙蝠算法 长短时记忆网络 城市轨道交通 短时客流量预测
下载PDF
多视角融合的时空动态GCN城市交通流量预测 被引量:2
13
作者 赵文竹 袁冠 +3 位作者 张艳梅 乔少杰 王森章 张雷 《软件学报》 EI CSCD 北大核心 2024年第4期1751-1773,共23页
城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前,时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建... 城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前,时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建静态路网拓扑图对城市空间相关性进行表示,忽略了节点的动态交通模式,难以表达节点流量之间的时序相似性,无法捕获路网节点之间在时序上的动态关联;2)只考虑路网节点的局部空间相关性,忽略节点的全局空间相关性,无法建模交通路网中局部区域和全局空间之间的依赖关系.为打破上述局限性,提出了一种多视角融合的时空动态图卷积模型用于预测交通流量:首先,从静态空间拓扑和动态流量模式视角出发,构建路网空间结构图和动态流量关联图,并使用动态图卷积学习节点在两种视角下的特征,全面捕获城市路网中多元的空间相关性;其次,从局部视角和全局视角出发,计算路网的全局表示,将全局特征与局部特征融合,增强路网节点特征的表现力,发掘城市交通流量的整体结构特征;接下来,设计了局部卷积多头自注意力机制来获取交通数据的动态时间相关性,实现在多种时间窗口下的准确流量预测;最后,在4种真实交通数据上的实验结果,证明了该模型的有效性和准确性. 展开更多
关键词 交通流量预测 多视角时空特征 图卷积网络(GCN) 时空图数据 注意力机制
下载PDF
基于机器学习的天然气管网分输站流量预测
14
作者 樊玉光 门嘉铖 +1 位作者 张科 吕岩 《数字技术与应用》 2024年第2期39-42,共4页
本文基于机器学习算法对天然气管网分输站流量进行预测。与传统、单一的门控循环单元(Gated Recurrent Unit,GRU)模型相比,基于经验模态分解(Empirical Mode Decomposition,EMD)和门控循环单元的预测模型能更好地捕捉时间序列数据中的... 本文基于机器学习算法对天然气管网分输站流量进行预测。与传统、单一的门控循环单元(Gated Recurrent Unit,GRU)模型相比,基于经验模态分解(Empirical Mode Decomposition,EMD)和门控循环单元的预测模型能更好地捕捉时间序列数据中的非线性关系和长期依赖性。以真实的天然气流量数据集进行数值验证,并采用平均绝对百分比误差(MAPE)和均方根误差(RMSE)作为评估指标。结果表明,EMD-GRU模型相对于单一的GRU模型在天然气流量预测方面具有更高的准确度和稳定性。为天然气管网供应管理和规划决策提供了一定程度上的参考。 展开更多
关键词 天然气流量 机器学习 流量预测 天然气管网 分输站 经验模态分解 门控 非线性关系
下载PDF
基于深度学习和大数据分析的智慧交通流量预测模型研究
15
作者 崔金魁 《信息化研究》 2024年第3期16-22,共7页
本文探讨了智慧交通系统中交通流量预测现状及深度学习在交通数据处理中的应用,在此基础上提出一种新的深度学习模型,专门用于智慧交通系统中的交通流量预测。该模型结合深度卷积神经网络和门控循环单元,可高效处理交通数据中的空间和... 本文探讨了智慧交通系统中交通流量预测现状及深度学习在交通数据处理中的应用,在此基础上提出一种新的深度学习模型,专门用于智慧交通系统中的交通流量预测。该模型结合深度卷积神经网络和门控循环单元,可高效处理交通数据中的空间和时间特征。通过验证,该模型在不同城市、路段类型和天气条件下均展现出卓越的预测能力和强大的数据适应性。在主干道上,模型的准确率达到89.4%,均方误差(MSE)为0.045;在支路上,准确率达到82.7%~85.2%,MSE介于0.039~0.055之间。与传统预测方法相比,特别是在复杂交通场景下,本模型在准确率和计算效率方面均有显著提升。 展开更多
关键词 智慧交通系统 交通流量预测 深度学习 卷积神经网络
下载PDF
基于Stacking集成学习的轨道交通短时客流量预测研究
16
作者 王菊娇 阙凡博 《西部交通科技》 2024年第9期157-159,166,共4页
针对轨道交通客流量预测问题,文章以南宁市轨道交通1号线为对象,提出了一种基于多模型Stacking集成学习的方法,对客流量进行预测并进行评估。通过融合XGBoost、LightGBM和LSTM模型,利用各模型优势互补,降低过拟合风险,提高预测准确性和... 针对轨道交通客流量预测问题,文章以南宁市轨道交通1号线为对象,提出了一种基于多模型Stacking集成学习的方法,对客流量进行预测并进行评估。通过融合XGBoost、LightGBM和LSTM模型,利用各模型优势互补,降低过拟合风险,提高预测准确性和泛化能力。结果显示:Stacking模型在客流量预测中表现优异,与实际值接近,评价指标表现良好,可有效提高运营效率和管理决策水平。 展开更多
关键词 轨道交通 流量预测 Stacking集成学习
下载PDF
一种利用ConvGRU解决交通流量预测问题的方法
17
作者 王玉森 景志勇 +5 位作者 卫琳 高宇飞 石磊 王清贤 陶永才 王向杰 《小型微型计算机系统》 CSCD 北大核心 2024年第10期2355-2361,共7页
准确的交通流量预测可协助交通管理部门工作,减少交通压力.但现有方法对交通流时间特征与空间特征学习不充分,将二者割裂讨论,忽视了时间与空间的动态相关性.针对以上问题,本文提出了基于ConvGRU的多时间尺度时空卷积交通流预测方法(MTS... 准确的交通流量预测可协助交通管理部门工作,减少交通压力.但现有方法对交通流时间特征与空间特征学习不充分,将二者割裂讨论,忽视了时间与空间的动态相关性.针对以上问题,本文提出了基于ConvGRU的多时间尺度时空卷积交通流预测方法(MTSTC),设计浅层时空卷积模块对数据中的时空相关性进行初步提取;提出以ConvGRU为核心特征提取器的深层时空卷积模块,对数据的时空特征进行更深层次挖掘;并从3种时间尺度范围的数据中提炼交通流的周期性特征;结合注意力机制设计了时空注意力模块辅助模型训练,提升模型收敛速率.在公开数据集PEMS04和PEMS08上进行实验验证,结果表明采用MAE和RMSE评价指标时,本文方法的准确率相较基线方法在两个数据集上提升了3.23%~5.64%. 展开更多
关键词 交通流量预测 时空卷积模块 注意力机制 ConvGRU
下载PDF
基于Transformer的网络流量预测研究 被引量:1
18
作者 田爱宝 魏娇娇 肖军弼 《信息技术》 2024年第4期156-160,共5页
网络流量预测是网络流量分析领域中亟待解决的关键任务之一。现基于机器学习的预测方法大多忽略了流量的长相关性,并且处理大量数据时耗时长。针对以上问题,文中将Transformer用于网络流量预测,通过多头注意力机制捕获流量的远程序列关... 网络流量预测是网络流量分析领域中亟待解决的关键任务之一。现基于机器学习的预测方法大多忽略了流量的长相关性,并且处理大量数据时耗时长。针对以上问题,文中将Transformer用于网络流量预测,通过多头注意力机制捕获流量的远程序列关系,学习流量的全局依赖关系。实验结果表明,该方法可以提高预测精度,并能有效降低训练时间。 展开更多
关键词 流量预测 TRANSFORMER 深度学习 注意力机制 特征提取
下载PDF
基于改进北方苍鹰优化随机配置网络的网络流量预测模型
19
作者 王堃 李少波 +1 位作者 何玲 周鹏 《计算机工程与科学》 CSCD 北大核心 2024年第7期1245-1255,共11页
网络流量预测作为一种关键技术,能帮助实现网络资源的合理分配、优化网络性能以及提供高效的网络服务。随着网络环境的演变和发展,网络流量的多样性和复杂性增加,为了提高网络流量的预测精度,提出了一种基于改进北方苍鹰优化随机配置网... 网络流量预测作为一种关键技术,能帮助实现网络资源的合理分配、优化网络性能以及提供高效的网络服务。随着网络环境的演变和发展,网络流量的多样性和复杂性增加,为了提高网络流量的预测精度,提出了一种基于改进北方苍鹰优化随机配置网络(CNGO-SCN)的网络流量预测模型。随机配置网络作为一种具有监督机制的增量式模型,在解决大规模数据回归和预测问题方面具有良好的优势。但是,一些超参数的选择影响了随机配置网络的准确性。针对这一问题,利用北方苍鹰算法对影响随机配置网络性能的正则化参数和比例因子进行优化,得到最佳数值。而北方苍鹰算法由于初始种群的随机分布导致种群个体质量不佳,因此引入混沌逻辑映射提升初始解的质量。将优化后的模型应用于英国学术网、欧洲某城市核心网网络流量数据集和合作企业搭建的网络协同制造云平台交换机接口的真实流量数据集,并与多种神经网络模型进行对比,以验证所提模型的网络流量预测能力。实验结果表明,该模型对比其他神经网络模型具有更高的预测精度,在实际应用场景中处理复杂数据时具备更加优秀的预测能力,该模型的预测误差下降了0.9%~99.7%。 展开更多
关键词 网络流量预测 随机配置神经网络 北方苍鹰优化算法 混沌逻辑映射
下载PDF
基于图提示微调的交通流量预测
20
作者 赖培源 李程 +2 位作者 王增辉 王昌栋 廖德章 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期2020-2029,共10页
交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,... 交通流量预测是建设智慧城市重要的基础功能,对城市的交通管理和用户出行规划具有重要意义.由于时间维度和空间维度的扩展,交通流量的数据具有规模大、增长快速、实时更新等特征,传统的训练模型通常需要将大量的历史数据进行训练预测,导致较长的计算时间和较高的算力成本,因此,如何使用低计算成本的预测模型来满足广泛的流量预测需求是重要的技术挑战.近年来兴起的提示微调范式在自然语言处理的下游任务推广中取得了较好的效果,受其启发,提出利用少量的实时数据来微调优化大规模历史数据预训练的模型,为交通流量模型预测的优化应用提出了一种新的思路.通过引入图提示微调的交通流量预测(traffic flow prediction based on graph prompt-finetuning,TPGPF)模型的泛化能力,在时空多维度下的交通流量图预测模型中,基于历史数据集进行预测模型的预训练,并引入可学习的提示向量,在预训练模型固化的情况下指导预训练的自监督学习模型,以适应新的数据预测任务,提升交通流量预测模型的通用性和有效性.通过在5个公开数据集上进行了大量的实验,证明了TPGPF的有效性. 展开更多
关键词 图提示 交通流量预测 微调 预训练模型 自监督学习
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部