Sharples’ 1 D physical model employing tide wind driven turbulence closure and surface heating cooling physics, was coupled with an ecological model with 9 biochemical components: phytoplankton, zooplankton, shellfis...Sharples’ 1 D physical model employing tide wind driven turbulence closure and surface heating cooling physics, was coupled with an ecological model with 9 biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.展开更多
文摘Sharples’ 1 D physical model employing tide wind driven turbulence closure and surface heating cooling physics, was coupled with an ecological model with 9 biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.