Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin ...Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.展开更多
A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is un-der ...A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is un-der normal condition, then kernel regression is further used for quality prediction and estimation. If faults have oc-curred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can ef-fectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.展开更多
We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time o...We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time of 2 days) in the monitoring of total suspended sediment (TSS) concentrations in dynamic water bodies using Poyang Lake, the largest freshwater lake in China, as an example. Field surveys conducted during October 17-26, 2009 showed a wide range of TSS concentration (3-524 mg/L). Atmospheric correction was implemented using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI with the aid of aerosol information retrieved from concurrent Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) surveys, which worked well at the CCD bands with relatively high reflectance. A practical exponential retrieval algorithm was created between satellite remote sensing reflectance and in-situ measured TSS concentration. The retrieved results for the whole water area matched the in-situ data well at most stations. The retrieval errors may be related to the problem of scale matching and mixed pixel. In three selected subregions of Poyang Lake, the distribution trend of retrieved TSS was consistent with that of the field investigation. It was shown that HJ-1A/1B CCD imagery can be used to estimate TSS concentrations in Poyang Lake over synoptic scales after applying an appropriate atmospheric correction method and retrieval algorithm.展开更多
Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical al...Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.展开更多
The aim of the research was to connect two methods of the chemical control. The first chemical treatments were applied according to the signalling method. The second method was applied according to the phonological cr...The aim of the research was to connect two methods of the chemical control. The first chemical treatments were applied according to the signalling method. The second method was applied according to the phonological criterion i.e., on the basis of the values of effective temperatures sums or heat sums for cutworms. The studies on cutworms infesting sugar beet crops were carried out in the years 2005-2008. The observation performed during the moth flights from May to September included two species, turnip moth (Agrotis segetum Den. & Schiff.) and heart-and-dart moth (A. exclamationis L.). The dynamics of moth flights was recorded in reference to readings of climatic conditions registered with the field meteorological stations set up near the light traps. Observations on cutworm occurrence during the vegetation season were done every 5-7 days. Moreover, additional studies were conducted under control conditions in the growth chambers at three programmed temperatures (17°C, 20 °C, 24 °C) and relative humidity (50%-70%). Based on the results the values for the heat sum of 501.1 °C and effective temperatures sum of 230.0 °C were determined for the developmental stages of cutworm. On the base of the results obtained it can be stated that the improved method of short-term forecasting can be an alternative solution in the integrated protection management against pest.展开更多
The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar ...The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.展开更多
Extended digital image correlation(X-DIC) method is one novel test method in experimental mechanics.In this paper,the principle of the X-DIC method was introduced in detail.A selection scheme of the initial value of N...Extended digital image correlation(X-DIC) method is one novel test method in experimental mechanics.In this paper,the principle of the X-DIC method was introduced in detail.A selection scheme of the initial value of Newton iteration method was proposed when Newton iteration method was applied to solve the partial differential equations.This scheme could make the X-DIC method suitable for the large deformation measurement and avoid the non-convergence phenomenon effectively.The performance of the X-DIC method was verified by simulated images.Since the pixel point with the maximum absolute error occurred mainly at the corner or on the interface of the region of interest(ROI,region used for correlation calculation),measured deformation of the core area(area surrounding the center point of the ROI with a smaller size) was taken as the reliable measured value.The measurement accuracy of the X-DIC method could be improved greatly by using the core area.Combined with a long-distance microscope,the X-DIC method could be used in the deformation measurement of the micro-region.Zero deformation experiment was done to test the precision of the measurement system.Then,the X-DIC method was applied to measure the micro-region deformation of the specimen with a crack.Test value was proved to be in accordance with the actual deformation,showing that the X-DIC method is suitable for the research of microscale mechanical behavior of materials.展开更多
文摘Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.
基金Supported by the National Natural Science Foundation of China (60504033)the Open Project of State Key Laboratory of Industrial Control Technology in Zhejiang University (0708004)
文摘A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is un-der normal condition, then kernel regression is further used for quality prediction and estimation. If faults have oc-curred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can ef-fectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.
基金Supported by the National Basic Research Program of China(973Program)(No.2011CB707106)the National Natural Science Foundation of China(Nos.41071261,41023001,41021061,40906092,40971193,41101415)+3 种基金the Opening Foundation of Institute of Remote Sensing and Earth Sciences,Hangzhou Normal University(No.PDKF2010YG06)the Fundamental Research Funds for the Central Universities,the China Postdoctoral Science Foundation(No.20100480861)LIESMARS Special Research Funding,the Natural Science Foundation of Hubei Province,China(No.2009CDB107)the Natural Science Foundation of Zhejiang Province,China(No.Y5090143)
文摘We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time of 2 days) in the monitoring of total suspended sediment (TSS) concentrations in dynamic water bodies using Poyang Lake, the largest freshwater lake in China, as an example. Field surveys conducted during October 17-26, 2009 showed a wide range of TSS concentration (3-524 mg/L). Atmospheric correction was implemented using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI with the aid of aerosol information retrieved from concurrent Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) surveys, which worked well at the CCD bands with relatively high reflectance. A practical exponential retrieval algorithm was created between satellite remote sensing reflectance and in-situ measured TSS concentration. The retrieved results for the whole water area matched the in-situ data well at most stations. The retrieval errors may be related to the problem of scale matching and mixed pixel. In three selected subregions of Poyang Lake, the distribution trend of retrieved TSS was consistent with that of the field investigation. It was shown that HJ-1A/1B CCD imagery can be used to estimate TSS concentrations in Poyang Lake over synoptic scales after applying an appropriate atmospheric correction method and retrieval algorithm.
基金Supported by the National High Technology Research and Development Program of China(2013AA040701)
文摘Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.
文摘The aim of the research was to connect two methods of the chemical control. The first chemical treatments were applied according to the signalling method. The second method was applied according to the phonological criterion i.e., on the basis of the values of effective temperatures sums or heat sums for cutworms. The studies on cutworms infesting sugar beet crops were carried out in the years 2005-2008. The observation performed during the moth flights from May to September included two species, turnip moth (Agrotis segetum Den. & Schiff.) and heart-and-dart moth (A. exclamationis L.). The dynamics of moth flights was recorded in reference to readings of climatic conditions registered with the field meteorological stations set up near the light traps. Observations on cutworm occurrence during the vegetation season were done every 5-7 days. Moreover, additional studies were conducted under control conditions in the growth chambers at three programmed temperatures (17°C, 20 °C, 24 °C) and relative humidity (50%-70%). Based on the results the values for the heat sum of 501.1 °C and effective temperatures sum of 230.0 °C were determined for the developmental stages of cutworm. On the base of the results obtained it can be stated that the improved method of short-term forecasting can be an alternative solution in the integrated protection management against pest.
基金supported by the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Sciencesthe National Basic Research Program of China (Grant No.2011CB811406)the National Natural Science Foundation of China(Grant Nos.10733020,10921303 and 11078010)
文摘The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772133 and 11072172)the Doctoral Fund of Ministry of Education of China (Grant No. 20090032110006)
文摘Extended digital image correlation(X-DIC) method is one novel test method in experimental mechanics.In this paper,the principle of the X-DIC method was introduced in detail.A selection scheme of the initial value of Newton iteration method was proposed when Newton iteration method was applied to solve the partial differential equations.This scheme could make the X-DIC method suitable for the large deformation measurement and avoid the non-convergence phenomenon effectively.The performance of the X-DIC method was verified by simulated images.Since the pixel point with the maximum absolute error occurred mainly at the corner or on the interface of the region of interest(ROI,region used for correlation calculation),measured deformation of the core area(area surrounding the center point of the ROI with a smaller size) was taken as the reliable measured value.The measurement accuracy of the X-DIC method could be improved greatly by using the core area.Combined with a long-distance microscope,the X-DIC method could be used in the deformation measurement of the micro-region.Zero deformation experiment was done to test the precision of the measurement system.Then,the X-DIC method was applied to measure the micro-region deformation of the specimen with a crack.Test value was proved to be in accordance with the actual deformation,showing that the X-DIC method is suitable for the research of microscale mechanical behavior of materials.