Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based o...Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient,rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient,when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases,while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energyincreases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.展开更多
This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in...This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).展开更多
In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evol...In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.展开更多
The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence o...The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.展开更多
In this study, Al/TiO2/Al2O3/p-Si was fabricated as a gas sensor. TiO2 and Al2O3 were grown by Atomic Layer Deposition method. The prepared film was tested in various gas concentrations at different operating temperat...In this study, Al/TiO2/Al2O3/p-Si was fabricated as a gas sensor. TiO2 and Al2O3 were grown by Atomic Layer Deposition method. The prepared film was tested in various gas concentrations at different operating temperatures ranging between 27 ℃ to 177 ℃. The sensitivity increases with increasing gas concentration and operating temperature which have a direct effect on sensing surface. The gas sensing mechanism could be explained with the surface controlled type based on the change of the electrical conductance of the semiconducting material. This mechanism is controlled by CO molecules and the amount of chemisorbed oxygen on the surface which is associated with temperature. Sample exhibits the basic parameters for gas sensors applications which are good stability, reproducibility and high sensitivity to CO gas which are. In addition, the response and recovery times are measured 19 and 26 s, respectively.展开更多
Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots...Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots and in the supporting soil of the naturally occurring grasses, Cynodon dactylon and Thinopyrurn ponticum, at two salt-affected sites, Gumble and Cundumbul in central-western New South Wales, Australia. The physiological parameters of the two grass species, including net photosynthetic rate (Pn), stomatal conductance (gs), and intercellular CO2 concentration (Ci), were investigated using one mature leaf from C. dactylon and T. ponticum populations. Increasing salinity levels in the topsoil had a significant influence on Ci and gs, whereas no significant effect occurred on Pn in C. dactylon and T. ponticum. The Pn values in C. dactylon and T. ponticum were greater at Cundumbul than at Gumble. The greater Mg concentration facilitated greater Pn in C. dactylon and T. ponticum populations at Cundumbul than Gumble. With increasing salinity levels in the soil, Na accumulation increased in C. dactylon and T. ponticum. The ratio between K and Na was ~ 1 in roots and shoots of both populations irrespective of the sites. Bioaccumulation factor (BF) and translocation factor (TF) results revealed that K and Na translocations were significantly higher in T. ponticum than in C. dactylon, whereas Ca and Mg translocations were significantly higher in C. dactylon than in T. ponticum. Accumulation of Na, K, Mg, and Ca ions was higher in T. ponticum than in C. dactylon; therefore, we suggest that T. ponticum as a greater salt accumulator than C. dactylon could be used for revegetation and phytoremediation of the salt-affected soils.展开更多
The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface i...The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.展开更多
Based on the analysis of tin penetration mechanism in the float glass process, the oxidation model of stannous ion is constructed considering the oxygen activity and the redox reaction in the glass surface layer. The ...Based on the analysis of tin penetration mechanism in the float glass process, the oxidation model of stannous ion is constructed considering the oxygen activity and the redox reaction in the glass surface layer. The calculation of stannous ion's oxidation rate makes it possible to predict both stannous and stannic ion's concentrations independently. And it is also the necessary precondition for the numerical verification of tin penetration mechanism. Coupled diffusion simulation method is established to simulate the penetration process of both stannous and stannic ions simultaneously. The result shows that when the green glass is formed in the reducing atmosphere in tin bath, the stannic ion is accumulated at the position where oxygen activity changes sharply. Satellite peak (internal local concentration maximum) occurs in the tin concentration profile of green glass, which is quite different from that in low iron glass. Compared with gradually cooling temperature regulation, the tin penetrated shifts to greater depth and the depth and magnitude of the satellite peak also increase when reheating temperature regulation is applied. In order to reduce the amount of penetrated tin, the residual time in the high temperature region should be shortened.展开更多
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
基金supported by the National Natural Science Foundation of China(41571262)the Chinese Ministry of Water Resources Science and Technology Promotion Program(TG1308)
文摘Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient,rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient,when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases,while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energyincreases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.
文摘This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).
基金Project(2017YFB0702401) supported by the National Key R&D Program of ChinaProject(51301146) supported by the National Natural Science Foundation of ChinaProjects(20720170038,20720170048) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the formation mechanisms of the layered growth phenomena in diffusion couples with spinodal decomposition,a phase field model combined with elastic strain field was employed.Microstructure evolutions of diffusion couple with spinodal decomposition in binary alloys were numerically simulated by considering concentration fluctuation and elastic anisotropy.The simulation results indicate that the number of the periodical layers decreases with the increase of initial concentration fluctuation,even with large elastic anisotropy.The growth of layered microstructures can be attributed to the directional diffusion enhanced by initially discontinuous chemical potential at the interface.
文摘The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.
文摘In this study, Al/TiO2/Al2O3/p-Si was fabricated as a gas sensor. TiO2 and Al2O3 were grown by Atomic Layer Deposition method. The prepared film was tested in various gas concentrations at different operating temperatures ranging between 27 ℃ to 177 ℃. The sensitivity increases with increasing gas concentration and operating temperature which have a direct effect on sensing surface. The gas sensing mechanism could be explained with the surface controlled type based on the change of the electrical conductance of the semiconducting material. This mechanism is controlled by CO molecules and the amount of chemisorbed oxygen on the surface which is associated with temperature. Sample exhibits the basic parameters for gas sensors applications which are good stability, reproducibility and high sensitivity to CO gas which are. In addition, the response and recovery times are measured 19 and 26 s, respectively.
文摘Salinity is a major soil contamination problem in Australia. To explore salinity remediation, we evaluated the concentrations of sodium (Na), potassium (K), magnesium (Mg), and calcium (Ca) in roots and shoots and in the supporting soil of the naturally occurring grasses, Cynodon dactylon and Thinopyrurn ponticum, at two salt-affected sites, Gumble and Cundumbul in central-western New South Wales, Australia. The physiological parameters of the two grass species, including net photosynthetic rate (Pn), stomatal conductance (gs), and intercellular CO2 concentration (Ci), were investigated using one mature leaf from C. dactylon and T. ponticum populations. Increasing salinity levels in the topsoil had a significant influence on Ci and gs, whereas no significant effect occurred on Pn in C. dactylon and T. ponticum. The Pn values in C. dactylon and T. ponticum were greater at Cundumbul than at Gumble. The greater Mg concentration facilitated greater Pn in C. dactylon and T. ponticum populations at Cundumbul than Gumble. With increasing salinity levels in the soil, Na accumulation increased in C. dactylon and T. ponticum. The ratio between K and Na was ~ 1 in roots and shoots of both populations irrespective of the sites. Bioaccumulation factor (BF) and translocation factor (TF) results revealed that K and Na translocations were significantly higher in T. ponticum than in C. dactylon, whereas Ca and Mg translocations were significantly higher in C. dactylon than in T. ponticum. Accumulation of Na, K, Mg, and Ca ions was higher in T. ponticum than in C. dactylon; therefore, we suggest that T. ponticum as a greater salt accumulator than C. dactylon could be used for revegetation and phytoremediation of the salt-affected soils.
文摘The present study is carried out to see the thermal-diffusion(Dufour) and diffusion-thermo(Soret) effects on the mixed convection boundary layer flow of viscoelastic nanofluid flow over a vertical stretching surface in a porous medium. Optimal homotopy analysis method(OHAM) is best candidate to handle highly nonlinear system of differential equations obtained from boundary layer partial differential equations via appropriate transformations. Graphical illustrations depicting different physical arising parameters against velocity, temperature and concentration distributions with required discussion have also been added. Numerically calculated values of skin friction coefficient, local Nusselt and Sherwood numbers are given in the form of table and well argued. It is found that nanofluid velocity increases with increase in mixed convective and viscoelastic parameters but it decreases with the increasing values of porosity parameter. Also, it is observed that Dufour number has opposite behavior on temperature and concentration profiles.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2007CB206901)the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (Grant No. 2006BAF02A27)
文摘Based on the analysis of tin penetration mechanism in the float glass process, the oxidation model of stannous ion is constructed considering the oxygen activity and the redox reaction in the glass surface layer. The calculation of stannous ion's oxidation rate makes it possible to predict both stannous and stannic ion's concentrations independently. And it is also the necessary precondition for the numerical verification of tin penetration mechanism. Coupled diffusion simulation method is established to simulate the penetration process of both stannous and stannic ions simultaneously. The result shows that when the green glass is formed in the reducing atmosphere in tin bath, the stannic ion is accumulated at the position where oxygen activity changes sharply. Satellite peak (internal local concentration maximum) occurs in the tin concentration profile of green glass, which is quite different from that in low iron glass. Compared with gradually cooling temperature regulation, the tin penetrated shifts to greater depth and the depth and magnitude of the satellite peak also increase when reheating temperature regulation is applied. In order to reduce the amount of penetrated tin, the residual time in the high temperature region should be shortened.