电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力...电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力系统储能领域具有广阔的应用前景。主要介绍了LMB的工作原理,重点综述了其发展历程和重要研究进展,并指出了现有电池体系存在的局限性与面临的挑战,在此基础上,探讨并明确了LMB的重点发展方向。展开更多
液态金属电池是面向电网大规模储能应用近年发展起来的一类低成本、长寿命的新型储能电池技术。电池均衡管理是电池组安全、高效运行的基本保障,该文针对液态金属电池低电压、大电流特性,设计基于电感和变压器的两级混合均衡系统。通过M...液态金属电池是面向电网大规模储能应用近年发展起来的一类低成本、长寿命的新型储能电池技术。电池均衡管理是电池组安全、高效运行的基本保障,该文针对液态金属电池低电压、大电流特性,设计基于电感和变压器的两级混合均衡系统。通过MATLAB/Simulink平台搭建液态金属电池模型以及电池组均衡系统仿真模型。在采用基于荷电状态(state of charge,SoC)的均衡控制策略中引入模糊逻辑控制器,提高了电池组的均衡效率。经过在静置工况和动态工况下仿真表明所提出的均衡方案能够有效改善电池组的不一致性,提高电池组的可用容量。另外,在静置工况下与单级均衡电路相比,所提出的均衡方案均衡时间缩短了91.6%。展开更多
文摘电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力系统储能领域具有广阔的应用前景。主要介绍了LMB的工作原理,重点综述了其发展历程和重要研究进展,并指出了现有电池体系存在的局限性与面临的挑战,在此基础上,探讨并明确了LMB的重点发展方向。
文摘液态金属电池是面向电网大规模储能应用近年发展起来的一类低成本、长寿命的新型储能电池技术。电池均衡管理是电池组安全、高效运行的基本保障,该文针对液态金属电池低电压、大电流特性,设计基于电感和变压器的两级混合均衡系统。通过MATLAB/Simulink平台搭建液态金属电池模型以及电池组均衡系统仿真模型。在采用基于荷电状态(state of charge,SoC)的均衡控制策略中引入模糊逻辑控制器,提高了电池组的均衡效率。经过在静置工况和动态工况下仿真表明所提出的均衡方案能够有效改善电池组的不一致性,提高电池组的可用容量。另外,在静置工况下与单级均衡电路相比,所提出的均衡方案均衡时间缩短了91.6%。