期刊文献+
共找到8,526篇文章
< 1 2 250 >
每页显示 20 50 100
基于深度卷积神经网络算法和先验知识构建冠心病患者大鱼际望诊模型的思路与方法 被引量:1
1
作者 刘大胜 李玉坤 +4 位作者 赵志伟 孙晨格 杨伟 王丽颖 韩学杰 《中华中医药学刊》 CAS 北大核心 2024年第5期17-19,共3页
基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标... 基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标准化的水平,可以有效地降低疾病的恶化率和病死率,促进中医望诊经验的转化。据此,结合前期开展的大鱼际特征与冠心病关系研究,得出大鱼际望诊可以用于冠心病早期预警筛查。以大鱼际望诊和冠心病之间的关系为例,将先验知识和深度卷积神经网络算法深度融合,将特征提取和分类合为一体,利用深度学习端对端的显著特点,输入观察到的原始大鱼际图像像素数据或信息,通过对大鱼际照片的大量深度学习,构建冠心病患者的关键特征要素,融合先验知识后,输出是否为冠心病的分类结果,中间为深层的网络结构。这一思路将提出一种中医望诊客观化、标准化的智能化算法,促进中医望诊经验的转化思路与方法,以提高基层群众的疾病预警筛查能力,服务“健康中国”战略。 展开更多
关键词 图像信息 深度卷积神经网络 先验知识 大鱼际望诊 冠心病
原文传递
利用深度卷积神经网络算法识别传统篆体书法的应用研究 被引量:1
2
作者 张磊 徐进 +2 位作者 郭瑞 闫东旭 李涛 《甘肃科学学报》 2021年第3期48-54,共7页
利用先进的数字化和智能化技术对我国古代文化遗产进行数字化应用和有效保护,以更快捷、更高效的方式解决凭借人力无法解决的问题,具有重要的现实意义。通过研究深度卷积神经网络在书法文字检测识别任务上的应用,设计了一个篆体书法文... 利用先进的数字化和智能化技术对我国古代文化遗产进行数字化应用和有效保护,以更快捷、更高效的方式解决凭借人力无法解决的问题,具有重要的现实意义。通过研究深度卷积神经网络在书法文字检测识别任务上的应用,设计了一个篆体书法文字检测识别的完整系统,包括数据采集、数据扩充、算法训练与测试和算法模型部署等流程。整个系统以YOLOv4目标检测算法为基础,根据篆体书法图像数据特征对采集得到的数据进行有效地扩充,进行多次训练和验证测试,最终获得了89.7%的平均精度、92.3%的准确率和94.7%的召回率,同时达到45张/s的识别速度;最终将识别检测模型部署至服务器端,并提供了接口供外部调用。实验证明设计的识别系统可以利用深度卷积神经网络自动、快速、准确地对篆体文字进行定位和识别,并且可以方便地调用训练和部署完成的模型。 展开更多
关键词 书法字体识别 深度学习 卷积神经网络
下载PDF
融合全局与局部特征的深度卷积神经网络算法 被引量:9
3
作者 程卫月 张雪琴 +1 位作者 林克正 李骜 《计算机科学与探索》 CSCD 北大核心 2022年第5期1146-1154,共9页
为进一步提高人脸表情识别的准确率,提出一种融合全局与局部特征的深度卷积神经网络算法(GL-DCNN)。该算法由两个改进的卷积神经网络分支组成,全局分支和局部分支,分别用于提取全局特征和局部特征,对两个分支的特征进行加权融合,使用融... 为进一步提高人脸表情识别的准确率,提出一种融合全局与局部特征的深度卷积神经网络算法(GL-DCNN)。该算法由两个改进的卷积神经网络分支组成,全局分支和局部分支,分别用于提取全局特征和局部特征,对两个分支的特征进行加权融合,使用融合后的特征进行分类。首先,提取全局特征,全局分支基于迁移学习,使用改进的VGG19网络模型进行特征提取;其次,提取局部特征,局部分支采用中心对称局部二值模式(CSLBP)算法进行第一次特征提取,得到原始图像的局部纹理信息,将其输入到浅层卷积神经网络进行第二次特征提取,使其自动提取出与表情相关的局部特征;再次,采用两个级联的全连接层对两个分支的特征进行降维,为其分配不同权重,进行加权融合;最后,采用softmax分类器进行分类。实验在CK+和JAFFE数据集上进行验证,分类精度分别达95%以上和93%以上,对比其他五种算法,该算法总体表现较好,具有较好的识别效果和良好的鲁棒性,可为人脸表情识别提供有效依据。 展开更多
关键词 表情识别 特征融合 卷积神经网络(CNN) 深度学习
下载PDF
基于深度卷积神经网络算法的肺结节检测模型 被引量:5
4
作者 杨晶晶 王骞 宣晓华 《数学建模及其应用》 2017年第4期1-9,F0002,共10页
以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛关注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练... 以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛关注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度,有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNA16数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的"计算机辅助肺癌筛查与诊断系统",该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阅片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。 展开更多
关键词 深度学习 卷积神经网络 肺癌筛查 肺结节 医学影像分析 计算机辅助诊断
下载PDF
基于深度卷积神经网络算法改进
5
作者 陈奕豪 《电子世界》 2018年第7期57-58,共2页
深度卷积神经网络在近年发展迅速,特别是在深度学习被提出来后。但在真实的人脸检测中,大的视觉变化,如背景,照明等,需要一种精确的判别模型来区分人脸和背景。于是,本文给出基于深度卷积网络算法的改进。
关键词 深度学习 卷积神经网络 人脸识别
下载PDF
基于经典深度卷积神经网络算法的火灾图像识别方法
6
作者 何豪 王杰军 《常州工学院学报》 2023年第4期20-25,共6页
基于4种经典深度卷积神经网络(DCNN)算法模型,在火灾图像识别方面进行了应用实践。建立火灾图像数据集,使用Tensorflow框架搭建训练环境,比较4种算法模型在训练和识别过程中的差异性。结果表明:SqueezeNet算法具有训练时间短、模型文件... 基于4种经典深度卷积神经网络(DCNN)算法模型,在火灾图像识别方面进行了应用实践。建立火灾图像数据集,使用Tensorflow框架搭建训练环境,比较4种算法模型在训练和识别过程中的差异性。结果表明:SqueezeNet算法具有训练时间短、模型文件小等优点,但训练精度较其他算法有所降低;Inception算法综合表现好,具有较高的准确率和中等的训练时间,而且收敛速度快;4种DCNN算法对多数火灾场景的识别准确率较高,但在对非火灾场景的抗干扰性方面存在较大提升空间。 展开更多
关键词 深度学习 卷积神经网络 火灾图像 识别准确率 火灾探测方法
下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
7
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
下载PDF
基于卷积神经网络的立体匹配算法研究
8
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
下载PDF
基于深度神经网络的遗传算法对抗攻击
9
作者 范海菊 马锦程 李名 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期82-90,I0007,共10页
深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个... 深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个基于卷积神经网络图像分类器的成功攻击.实验结果表明在对3个分类模型进行单像素攻击时,67.92%的CIFAR-10数据集中的自然图像可以被扰动到至少一个目标类,平均置信度为79.57%,攻击效果会随着修改像素的增加进一步提升.此外,相比于LSA和FGSM方法,攻击效果有着显著提升. 展开更多
关键词 卷积神经网络 遗传算法 对抗攻击 图像分类 信息安全
下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断
10
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗
11
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
原文传递
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计
12
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
下载PDF
基于遗传算法优化卷积神经网络的滚动轴承故障诊断方法研究
13
作者 孙豫 张雷 周凯 《制造业自动化》 2025年第1期89-95,共7页
对轴承故障类型的准确诊断有利于提高设备可靠性和效率,在早期诊断和预测故障方面开展研究具有重要意义。目前有一部分诊断方法通过手动提取故障特征进行分类,另一部分使用神经网络的诊断方法,但缺乏网络自适应调参的能力,泛化能力不足... 对轴承故障类型的准确诊断有利于提高设备可靠性和效率,在早期诊断和预测故障方面开展研究具有重要意义。目前有一部分诊断方法通过手动提取故障特征进行分类,另一部分使用神经网络的诊断方法,但缺乏网络自适应调参的能力,泛化能力不足。因此提出使用遗传算法优化卷积神经网络进行故障诊断,其中一维卷积神经网络可以提取轴承故障信号中的微弱特征,使用遗传算法对卷积神经网络的网络参数进行自适应调参,提高了模型的诊断精度和泛化能力。实验结果表明,该模型的诊断平均准确率为98.56%,比传统的诊断方法1d-CNN、MLP和SVM分别提高了3.26%,10.45%,13.72%。 展开更多
关键词 轴承故障诊断 一维卷积神经网络 遗传算法
下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
14
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
下载PDF
基于深度卷积神经网络的雷达伺服转台消隙策略
15
作者 鲍子威 吴影生 房景仕 《雷达科学与技术》 北大核心 2025年第1期101-108,118,共9页
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐... 精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。 展开更多
关键词 深度卷积神经网络 精密雷达伺服转台 双电机消隙 可靠性
下载PDF
基于卷积神经网络的高层建筑智能控制算法研究
16
作者 刘康生 涂建维 +1 位作者 张家瑞 李召 《重庆大学学报》 北大核心 2025年第1期66-75,共10页
浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑... 浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。 展开更多
关键词 深度学习 一维卷积神经网络 智能控制 数据特征可视化 泛化性能
下载PDF
LED荧光光谱结合卷积神经网络算法预测核桃油与葵花油的混合浓度
17
作者 崔亮 占军贵 贺常涛 《光散射学报》 北大核心 2025年第1期129-135,共7页
核桃油是一种营养丰富且价格较高的坚果植物油,使用较便宜的油掺入核桃油是目前核桃油掺假的主要手段之一。为实现一种快速高效的核桃油掺假的定量分析方法和检测技术,本文提出采用紫外LED荧光光谱结合卷积神经网络算法预测核桃油与葵... 核桃油是一种营养丰富且价格较高的坚果植物油,使用较便宜的油掺入核桃油是目前核桃油掺假的主要手段之一。为实现一种快速高效的核桃油掺假的定量分析方法和检测技术,本文提出采用紫外LED荧光光谱结合卷积神经网络算法预测核桃油与葵花油的混合浓度。首先,制备了一系列核桃油和葵花油混合样本,并通过紫外LED激发混合油样的荧光光谱,采用EMD-PSO优化阈值算法可去除了荧光光谱中的噪声信息,理论计算并分析了荧光光谱的叠加谱峰,建立了混合油样的荧光光谱数据库。然后,基于荧光光谱数据库构建了预测混合油样中核桃油浓度的卷积神经网络模型。实验结果表明,本文提出的检测技术不仅表征了两种植物油的荧光光谱差异,基于卷积神经网络的定量分析方法在预测混合浓度方面也具有良好的准确性和稳定性,模型对测试集预测的R 2和平均误差分别为0.9853和0.0783。总之,本研究为快速、非破坏性地检测核桃油与葵花油的掺伪浓度提供了一种新的方案,有望在食品和油脂行业中得到广泛应用。 展开更多
关键词 LED荧光 卷积神经网络算法 核桃油 葵花油 掺假行为
下载PDF
Nadam算法优化卷积神经网络的滚动轴承多故障耦合诊断
18
作者 唐蒙 张义民 张凯 《机械设计与制造》 北大核心 2025年第3期23-26,39,共5页
针对滚动轴承在变载荷,变转速环境和多故障耦合工况下,传统故障诊断方法存在诊断准确率低,泛化能力差的问题,提出了一种基于Nadam算法优化的卷积神经网络模型。其优点是加深卷积神经网络模型的结构,进一步加强网络对特征的表达能力。利... 针对滚动轴承在变载荷,变转速环境和多故障耦合工况下,传统故障诊断方法存在诊断准确率低,泛化能力差的问题,提出了一种基于Nadam算法优化的卷积神经网络模型。其优点是加深卷积神经网络模型的结构,进一步加强网络对特征的表达能力。利用Nadam算法提高所建立网络模型的收敛速度和学习质量,利用新的网络模型实现滚动轴承故障诊断。为验证提出方法的有效性,通过对BL2060实验平台上变载荷、变转速的19类多故障耦合的实验数据集进行实验分析,并与目前常用网络模型进行对比,结果表明该模型对多故障耦合的轴承故障分类可达到100%的准确率,优于其他网络模型。该方法的诊断准确率高,收敛速度快,适用于多故障类型耦合的滚动轴承的故障诊断。 展开更多
关键词 滚动轴承 多故障耦合 卷积神经网络 Nadam算法 变载荷 变转速 故障诊断
下载PDF
基于粒子群优化算法的量子卷积神经网络
19
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
下载PDF
基于粗糙集-卷积神经网络组合算法的赣南山区地下水潜力研究
20
作者 杨丹妮 李英冰 《测绘与空间地理信息》 2025年第2期33-37,共5页
赣南山区饮用水源长期存在季节性断流现象。为寻找稳定的地下水源、满足供水需求,同时提高钻井成功率、降低成本,进行地下水潜力评估十分必要。本文提出一种粗糙集-卷积神经网络组合算法(RS-CNN),结合遗传算法的粗糙集属性约简方法确定... 赣南山区饮用水源长期存在季节性断流现象。为寻找稳定的地下水源、满足供水需求,同时提高钻井成功率、降低成本,进行地下水潜力评估十分必要。本文提出一种粗糙集-卷积神经网络组合算法(RS-CNN),结合遗传算法的粗糙集属性约简方法确定影响地下水含量的地形、气象、植被因素,将经粗糙集筛选后的指标作为卷积神经网络的输入,训练最优模型进行区域地下水潜力预测。经计算,组合模型F1得分达0.91,较单一模型的F1得分0.70提高了0.21;赣县区平均地下水潜力达0.68,有较大开采空间。实验结果验证了RS-CNN模型具有较好的迁移能力,可以用于无先验水文地质信息地区的地下水潜力预测,大大减少了地下水探查的外业工作量。 展开更多
关键词 地下水 地下水潜力 卷积神经网络 粗糙集 遗传算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部