随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个...由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个目标而设计网络的。提出一种基于深度支持向量数据描述(Deep Support Vector Data Description, DSVDD)的方法,通过学习一个深度神经网络,使得输入的正常样本空间能够映射到最小超球面。通过DSVDD,不仅能找到最小尺寸的数据超球面以建立SVDD,而且可以学习有用的数据特征表示以及正常模型。在测试时,映射在超球面内的样本被判别为正常,而映射在超球面外的样例判别为异常。提出的方法在CUHK Avenue和ShanghaiTech Campus数据集上分别取得了87.4%和74.5%的帧级AUC,检测结果优于现有的最新方法。展开更多
支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波...支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波包分解特征提取和SVDD的故障诊断方法,用小波包分解技术提取信号各频带的能量作为信号特征,用SVDD方法进行分类。对滚动轴承故障诊断的仿真实验结果显示,该方法可有效处理复杂机械振动信号,提高故障诊断的准确性。展开更多
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘由于异常定义的模糊性,异常数据的稀少性,以及复杂的环境背景和人类行为,视频异常检测是计算机视觉领域中一大难题。现有基于深度学习的异常检测方法往往是利用训练好的网络提取特征或者是基于现有网络结构的,而并非针对于异常检测这个目标而设计网络的。提出一种基于深度支持向量数据描述(Deep Support Vector Data Description, DSVDD)的方法,通过学习一个深度神经网络,使得输入的正常样本空间能够映射到最小超球面。通过DSVDD,不仅能找到最小尺寸的数据超球面以建立SVDD,而且可以学习有用的数据特征表示以及正常模型。在测试时,映射在超球面内的样本被判别为正常,而映射在超球面外的样例判别为异常。提出的方法在CUHK Avenue和ShanghaiTech Campus数据集上分别取得了87.4%和74.5%的帧级AUC,检测结果优于现有的最新方法。
文摘支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,该方法能够在只有一类学习样本的情况下建立分类器,其在机械故障诊断中的应用有望解决制约智能故障诊断技术发展的故障数据缺乏问题。文中提出一种基于小波包分解特征提取和SVDD的故障诊断方法,用小波包分解技术提取信号各频带的能量作为信号特征,用SVDD方法进行分类。对滚动轴承故障诊断的仿真实验结果显示,该方法可有效处理复杂机械振动信号,提高故障诊断的准确性。