文摘图像特征是基于内容的图像检索(Content-based image retrieval,CBIR)的关键,大部分使用的手工特征难以有效地表示乳腺肿块的特征,底层特征与高层语义之间存在语义鸿沟。为了提高CBIR的检索性能,本文采用深度学习来提取图像的高层语义特征。由于乳腺X线图像的深度卷积特征在空间和特征维度上存在一定的冗余和噪声,本文在词汇树和倒排文件的基础上,对深度特征的空间和语义进行优化,构建了两种不同的深度语义树。为了充分发挥深度卷积特征的识别能力,根据乳腺图像深度特征的局部特性对树节点的权重进行细化,提出了两种节点加权方法,得到了更好的检索结果。本文从乳腺X线图像数据库(Digital database for screening mammography,DDSM)中提取了2200个感兴趣区域(Region of interest,ROIs)作为数据集,实验结果表明,该方法能够有效提高感兴趣肿块区域的检索精度和分类准确率,并且具有良好的可扩展性。