期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
融合注意力机制和深度超参数化卷积的遥感影像桥梁目标检测算法 被引量:1
1
作者 余培东 《科学技术创新》 2023年第25期38-41,共4页
深度学习技术发展迅速,应用深度学习技术进行遥感影像快速自动化处理使得遥感技术现代化成为可能。针对现有目标检测算法对遥感影像桥梁目标检测精度较差的缺陷,本文以YOLOv4算法为基础,通过嵌入注意力机制模块以及替换传统卷积层为深... 深度学习技术发展迅速,应用深度学习技术进行遥感影像快速自动化处理使得遥感技术现代化成为可能。针对现有目标检测算法对遥感影像桥梁目标检测精度较差的缺陷,本文以YOLOv4算法为基础,通过嵌入注意力机制模块以及替换传统卷积层为深度超参数化卷积来加强算法的特征提取能力,从而提升算法检测精度,并设计实验进行对比验证。实验结果表明:本文提出的算法在不显著增加算法训练成本的前提下,使高分桥梁数据集的AP提高至80.4%,DOTA桥梁数据集的AP提高至67.2%,有效证明了本文改进算法的有效性。 展开更多
关键词 深度学习 遥感影像 桥梁目标检测 注意力机制 深度超参数化卷积
下载PDF
基于Res2Net-RetinaNet的活性污泥指示性微生物目标检测
2
作者 赵立杰 鲁茜 +1 位作者 黄明忠 王国刚 《化工自动化及仪表》 CAS 2024年第5期785-795,共11页
活性污泥中原生动物、后生动物等指示性微生物是污水处理运行调控的重要指标。针对活性污泥微生物不同种类之间,小目标类微生物体型较小、微生物个体颜色背景和图像颜色背景相似的现象,提出基于Res2Net-RetinaNet的活性污泥指示性微生... 活性污泥中原生动物、后生动物等指示性微生物是污水处理运行调控的重要指标。针对活性污泥微生物不同种类之间,小目标类微生物体型较小、微生物个体颜色背景和图像颜色背景相似的现象,提出基于Res2Net-RetinaNet的活性污泥指示性微生物检测方法。Res2Net-RetinaNet模型采用精度更高的新维度残差块Res2Net模块捕获原有特征的丰富信息。在主干网络输出的第1层引入通道和空间注意力机制CBAM,进一步帮助浅层特征信息在网络中流动。最后,在特征融合模块中引入深度超参数化卷积(Do-Conv),在不增加计算量的前提下持续加快模型的收敛。将所提方法应用于某污水厂采集数据中进行实验,结果表明:所提方法与Fast R-CNN、SSD、YOLOv3、YOLOv4、FCOS、CenterNet及RetinaNet等目标检测模型相比,检测精度最高(92.8%),相对于原始RetinaNet目标检测算法精度提升4.97%。 展开更多
关键词 Res2Net-RetinaNet 污水处理 微生物 目标检测 Res2Net模块 CBAM注意力机制 深度超参数化卷积
下载PDF
一种轻量化YOLOv4的遥感影像桥梁目标检测算法 被引量:2
3
作者 余培东 王鑫 +2 位作者 江刚武 刘建辉 徐佰祺 《海洋测绘》 CSCD 北大核心 2022年第2期59-64,共6页
深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参... 深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参数化卷积层(DO_Conv),提出一种兼具精度和检测效率的轻量化模型。实验表明:比较原始YOLOv4算法,本文算法将模型权重降低55%,检测效率提升70%以上,证明了本文改进之处的有效性;在精度方面,本文算法在与SSD、RetinaNet、YOLOv3和CenterNet等经典目标检测算法比较中仍保持精度优势。与YOLOv4算法相比,本文算法在难度较低的检测任务中精度损失较低,但在检测难度较高的DOTA桥梁数据集中精度损失明显。 展开更多
关键词 桥梁目标检测 YOLOv4算法 MobileNetv3算法 深度超参数化卷积 轻量模型
下载PDF
基于改进残差网络的葡萄叶片病害识别 被引量:7
4
作者 戴久竣 马肄恒 +1 位作者 吴坚 班兆军 《江苏农业科学》 北大核心 2023年第5期208-215,共8页
葡萄病害是导致葡萄严重减产的主要因素,大多数病害症状都反映在葡萄的叶片上,但是人工针对叶片的识别费时且效率低。本研究提出了一种基于改进残差网络的葡萄叶片病害识别模型。该研究在ResNet50的基础上采用金字塔卷积网络,通过其包... 葡萄病害是导致葡萄严重减产的主要因素,大多数病害症状都反映在葡萄的叶片上,但是人工针对叶片的识别费时且效率低。本研究提出了一种基于改进残差网络的葡萄叶片病害识别模型。该研究在ResNet50的基础上采用金字塔卷积网络,通过其包含不同大小和不同深度的卷积核来处理输入,然后以特征融合来获得不同程度的病害特征细节。在金字塔网络结构上采用深度超参数化卷积层代替传统的卷积层,能够加快模型收敛速度,有效提升模型精度。结果表明,改进后的残差网络模型与AlexNet、MobileNetV2、ResNet50/101、VGG16模型相比,在准确性方面具有显著优势。与原模型相比较,识别准确率提高3.18百分比,改进模型对病害识别准确率高达98.20%。可以为识别葡萄叶片病害提供参考。 展开更多
关键词 葡萄病害 残差网络 金字塔卷积 深度超参数化卷积
下载PDF
基于改进U-net的金属工件表面缺陷图像分割方法 被引量:4
5
作者 王一 龚肖杰 苏皓 《应用光学》 CAS 北大核心 2023年第1期86-92,共7页
针对金属工件表面小尺寸缺陷及受非均匀光照影响的图像缺陷难以分割的问题,提出了一种改进的U-net语义分割网络,实现金属工件表面缺陷图像的精确分割。首先,在U-net网络中融入CBAM(convolutional block attention module)模块来提升图... 针对金属工件表面小尺寸缺陷及受非均匀光照影响的图像缺陷难以分割的问题,提出了一种改进的U-net语义分割网络,实现金属工件表面缺陷图像的精确分割。首先,在U-net网络中融入CBAM(convolutional block attention module)模块来提升图像中缺陷目标的显著度;其次,采用深度超参数化卷积DO-Conv(depthwise over-parameterized convolutional)代替网络中部分传统卷积,增加网络可学习的参数数量;然后,采用Leaky Relu函数代替网络中部分Relu函数,提高模型对负区间的特征提取能力;最后,采用中值滤波及非均匀光照的补偿方法进行图像预处理,减弱非均匀光照对金属工件图像表面缺陷的影响。结果表明:改进后的网络平均交并比、准确率和Dice系数指标分别达到0.833 5、0.933 2、0.867 4,改进的网络显著提升了对金属工件表面缺陷图像的分割效果。 展开更多
关键词 表面缺陷 图像分割 语义分割网络 卷积注意力模块 深度超参数化卷积
下载PDF
融合Transformer和CNN的手掌静脉识别网络 被引量:1
6
作者 吴凯 沈文忠 +1 位作者 贾丁丁 梁娟 《计算机工程与应用》 CSCD 北大核心 2023年第24期98-109,共12页
针对手掌静脉特征提取识别精度不高问题,提出了掌静脉识别网络PVCodeNet。该网络设计了改进的BasicBlock和Transformer Encoder模块结合并运用扩大决策边界的损失函数AAM-Loss(additive angular margin loss)。该网络首次将Transformer ... 针对手掌静脉特征提取识别精度不高问题,提出了掌静脉识别网络PVCodeNet。该网络设计了改进的BasicBlock和Transformer Encoder模块结合并运用扩大决策边界的损失函数AAM-Loss(additive angular margin loss)。该网络首次将Transformer Encoder模块成功用于掌静脉图像全局特征提取,改进的BasicBlock使用深度超参数化卷积Do-Conv取代传统卷积Conv进行特征提取使提取的特征更加具有区分性,该模块还加入规一化的注意力机制NAM模块,通过应用权重稀疏性惩罚项抑制不显著性特征的权值来提取图像在通道和空间域上重要的细节特征。在手掌关键点定位、ROI提取、图像增强方面作了详细描述,在特征向量维度、AAM-Loss参数设置方面做了详细实验,在PolyU数据库和自建库SEPAD-PV数据库上进行消融实验测试,EER均达到了0,成功实现了最高识别率的突破。为了验证该网络的泛化性能,还在具有相似纹理特征的掌纹数据库Tongji和指静脉数据库SDUMLA上进行验证,EER远远优于其他主流算法,充分证明了提出算法的优越性。 展开更多
关键词 手掌静脉识别 Transformer编码模块 深度超参数化卷积(Do-Conv) 规一注意力机制(NAM) 扩大决策边界的损失函数(AAM-Loss)
下载PDF
面向细粒度图像识别的通道注意力多分支网络 被引量:2
7
作者 王彬州 肖志勇 《激光与光电子学进展》 CSCD 北大核心 2021年第22期164-172,共9页
细粒度图像识别研究的内容是大类下的子类别识别问题,其关键是找到图像中的关键区域并从中提取有效特征。针对现有方法在定位关键区域时无法兼顾准确性和计算量的问题,提出了一种引入高效通道注意力模块的多分支网络。首先,在递归注意... 细粒度图像识别研究的内容是大类下的子类别识别问题,其关键是找到图像中的关键区域并从中提取有效特征。针对现有方法在定位关键区域时无法兼顾准确性和计算量的问题,提出了一种引入高效通道注意力模块的多分支网络。首先,在递归注意力卷积神经网络的基础上引入通道注意力定位图像中目标的位置。然后,用深度超参数化卷积替换传统卷积操作,增加了网络可学习的参数。最后,用改进的注意力部件模块切割出多个图像关键区域部件,以捕捉丰富的局部信息。实验结果表明,本方法在弱监督情况下的识别效果较好,在两个常用细粒度数据集Stanford Cars、Food-101上的识别准确率分别为95.4%和90.6%。 展开更多
关键词 图像处理 细粒度图像识别 通道注意力 深度超参数化卷积 卷积神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部