提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距...提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的.展开更多
分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,本文综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的基...分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,本文综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的基于混合分割算法——IHWF(Improved Hybrid Watershed and FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。试验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。展开更多
文摘提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的.
文摘分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,本文综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的基于混合分割算法——IHWF(Improved Hybrid Watershed and FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。试验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。