It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
This paper presents the design method of hybrid drive system for the minibus with some limited conditions. The approach of design hybrid drive system is based on the dynamic modeling and simulation of the hybrid minib...This paper presents the design method of hybrid drive system for the minibus with some limited conditions. The approach of design hybrid drive system is based on the dynamic modeling and simulation of the hybrid minibus with planetary gear system. The main target of the design is to obtain the optimal design with the proper hybrid drive configuration and control for a given set of design constraints. In oder to meet the design target, it's necessary to adjust some parameters such as mechanical ratios and parameters of battery pack as well as control by simulation. During simulation the transient operating process can be studied in details with the dynamic model in Matlab/Simulink. The control strategy can be optimized by running the simulation and monitoring the operation of each components: the operating area of internal combustion engine (ICE), fuel consumption (energy consumption), the power distribution, the torque and rotary speed of ICE and motor, the operating efficiency of motor, the aheration of battery state of charge (SOC), current and voltage.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A s...A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.展开更多
Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving inp...Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.展开更多
This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrog...This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.展开更多
This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, el...This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.展开更多
An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPE...An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPERT and integration software LOTUS 1-2-3 in this paper. Itis known by practicing that a medium-scale EDSS constructed on microcomputer is completcly, feaasible by means of VP-EXEPERT to construct knowledge base system (KBS), LOTUS 1-2-3 tomake decision support system (DSS) and link them with BAT.展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particula...Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particular, smooth interfacing of the design data is crucial to reduce product cost and time to market. Having a product model that contains the complete product description and computer-aided tools that can understand each other are the primary requirements to achieve the interfacing goal. This article discusses the development methodology of hybrid engineering software systems with particular focus on application of soft computing tools such as genetic algorithms and neural networks. Forms of hybridization options are discussed and the applications are elaborated using two case studies. The forefront aims to develop hybrid systems that combine the strong side of each tool, such as, the learning, pattern recognition and classification power of neural networks with the powerful capacity of genetic algorithms in global search and optimization. While most optimization tasks need a certain form of model, there are many processes in the mechanical engineering field that are difficult to model using conventional modeling techniques. The proposed hybrid system solves such difficult-to-model processes and contributes to the effort of smooth interfacing design data to other downstream processes.展开更多
A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existi...A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.展开更多
Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cell...Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cells and modules have resulted in prototypes of superior performance that was verified by independent tests in the Institute of Transportation Studies, UC (ultracapacitor) Davis, in JME Inc., in Wayne State University, and in some other labs. All the test results confirm the superlative performance of the devices developed: carbon-carbon ultracapacitors demonstrate the extremely low inner resistance resulting in the highest power capability and efficiency that also alleviates the cooling requirements and improves safety. Our "parallel" hybrid devices demonstrate substantially higher energy density than competing LIC (lithium ion capacitor) technologies keeping at the same time the high power density, comparable with the best carbon-carbon ultracapacitors available in the market. In order to make ultracapacitor technology even more attractive to automakers, new organic electrolytes (not ionic liquids) have been developed and are currently under testing at temperatures about 100 ℃ and voltages up to 3.0 V.展开更多
Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, ...Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, in combined toxicity field, almost all studies on MCM focus on the mixtures designed by the equivalenteffect concentration ratio(EECR) procedure. However, the EECR mixtures cannot represent the whole mixture system because the EECR mixtures are located on one mixture ray in concentration space formed by multiple components. In our view, some optimal experimental design such as the uniform design(UD) should be used to effectively select many representative mixture rays from the MCM system,instead of single EECR ray. The uniform design ray(UDray) integrating UD idea with fixed-ratio ray design can systematically and comprehensively measure the combined toxicity changes in the MCM system. This review introduces the operation method, construction of uniform table and corresponding usable table, and some cases of application of the UD-ray to help readers easily use UD-ray in their MCM toxicity assessment.展开更多
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.
文摘This paper presents the design method of hybrid drive system for the minibus with some limited conditions. The approach of design hybrid drive system is based on the dynamic modeling and simulation of the hybrid minibus with planetary gear system. The main target of the design is to obtain the optimal design with the proper hybrid drive configuration and control for a given set of design constraints. In oder to meet the design target, it's necessary to adjust some parameters such as mechanical ratios and parameters of battery pack as well as control by simulation. During simulation the transient operating process can be studied in details with the dynamic model in Matlab/Simulink. The control strategy can be optimized by running the simulation and monitoring the operation of each components: the operating area of internal combustion engine (ICE), fuel consumption (energy consumption), the power distribution, the torque and rotary speed of ICE and motor, the operating efficiency of motor, the aheration of battery state of charge (SOC), current and voltage.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
文摘A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.
基金Supported by the National Natural Science Foundation of China(50876117)the Fundamental Research Funds for the Central Universities(CDJXS11141149)
文摘Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different.
文摘This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.
文摘This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.
文摘An expert decision support system (EDSS) for multi-bins balance and contro1 of orequality in production ore bins of some large-scale open pit iron mine in China has been developed byexpert svitem tool software VP-EXPERT and integration software LOTUS 1-2-3 in this paper. Itis known by practicing that a medium-scale EDSS constructed on microcomputer is completcly, feaasible by means of VP-EXEPERT to construct knowledge base system (KBS), LOTUS 1-2-3 tomake decision support system (DSS) and link them with BAT.
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.
文摘Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particular, smooth interfacing of the design data is crucial to reduce product cost and time to market. Having a product model that contains the complete product description and computer-aided tools that can understand each other are the primary requirements to achieve the interfacing goal. This article discusses the development methodology of hybrid engineering software systems with particular focus on application of soft computing tools such as genetic algorithms and neural networks. Forms of hybridization options are discussed and the applications are elaborated using two case studies. The forefront aims to develop hybrid systems that combine the strong side of each tool, such as, the learning, pattern recognition and classification power of neural networks with the powerful capacity of genetic algorithms in global search and optimization. While most optimization tasks need a certain form of model, there are many processes in the mechanical engineering field that are difficult to model using conventional modeling techniques. The proposed hybrid system solves such difficult-to-model processes and contributes to the effort of smooth interfacing design data to other downstream processes.
文摘A design of a solar-wind electrical hybrid system to supply space heating requirements for a 1,200 m^2 residential building in Amman-Jordan was implemented. The building heating requirements were estimated from existing heating building data based on traditional heating design already adopted by engineering firms in Jordan. The traditional heating load was transferred into electrical load to be supplied by hybrid system. The hybrid system consists of a 75 kW vertical axis windmill and 140 solar modules. Because of the high cost of land in residential buildings, the hybrid system is to be installed on the building roof. The hybrid system and the conventional systems' cost were found to be compatible in four years period when oil prices reach $100 per barrel. As the international price of oil rises above $100 per barrel, the proposed hybrid system becomes more economical than the already existing hot water heating system.
文摘Novel carbon-carbon ultracapacitors and hybrid lithium-carbon devices are described. New approach to the design of electrode materials and electrochemical systems followed by the improved design of ultracapacitor cells and modules have resulted in prototypes of superior performance that was verified by independent tests in the Institute of Transportation Studies, UC (ultracapacitor) Davis, in JME Inc., in Wayne State University, and in some other labs. All the test results confirm the superlative performance of the devices developed: carbon-carbon ultracapacitors demonstrate the extremely low inner resistance resulting in the highest power capability and efficiency that also alleviates the cooling requirements and improves safety. Our "parallel" hybrid devices demonstrate substantially higher energy density than competing LIC (lithium ion capacitor) technologies keeping at the same time the high power density, comparable with the best carbon-carbon ultracapacitors available in the market. In order to make ultracapacitor technology even more attractive to automakers, new organic electrolytes (not ionic liquids) have been developed and are currently under testing at temperatures about 100 ℃ and voltages up to 3.0 V.
基金supported by the National Natural Science Foundation of China(2117709721207002)Specialized Research Fund for the Doctoral Program of Higher Education(20120072110052)
文摘Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, in combined toxicity field, almost all studies on MCM focus on the mixtures designed by the equivalenteffect concentration ratio(EECR) procedure. However, the EECR mixtures cannot represent the whole mixture system because the EECR mixtures are located on one mixture ray in concentration space formed by multiple components. In our view, some optimal experimental design such as the uniform design(UD) should be used to effectively select many representative mixture rays from the MCM system,instead of single EECR ray. The uniform design ray(UDray) integrating UD idea with fixed-ratio ray design can systematically and comprehensively measure the combined toxicity changes in the MCM system. This review introduces the operation method, construction of uniform table and corresponding usable table, and some cases of application of the UD-ray to help readers easily use UD-ray in their MCM toxicity assessment.