The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr...The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.展开更多
The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the materia...The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.展开更多
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru...The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.展开更多
Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat trea...Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat treatment temperature (HTT) on the oxidation behavior was investigated by dynamic and isothermal thermogravimetric analyses. The structure of GC was examined by X-ray diffractometry (XRD) and the morphologies of GC before and after oxidation were examined by scanning electron microscopy (SEM). It is shown that the GC samples present peculiar oxidation behavior. The anti-oxidation behavior increases with increasing the HTT to 1 600 ℃, whereas decreases gradually thereafter. GC sample heat treated at 1 600℃ obtains relatively optimal anti-oxidation properties under this condition. During the oxidation, this material produces grid network matrix surface and numerous nodular residues on the surface, resulting in excellent resistance to the attack of oxygen atoms.展开更多
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations i...Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO - 3 N, NO - 2 N, NH + 4 N, SiO 2- 3 Si, PO 3- 4 P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C , the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D , the coefficient of water temperature’s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant nutrient concentrations but low phytoplankton biomass in some waters is reasonably explained in this paper.展开更多
The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a th...The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.展开更多
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金Project (2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.
基金The National Natural Science Foundation of China(No.20406016)the Project of Fujian Petrochemical Company of SIN-OPEC (No.MS/FJ-08-JS-15-2005-01).
文摘The elementary reactions of propylene polymerization catalyzed by conventional Ziegler-Natta catalysts was proposed according to the comprehensive view and without considering the effect of any impurity in the material on propylene polymerization. The Monte Carlo simulation technique was employed to investigate the kinetics of propylene polymerization in order to determine the validity of the stationary state assumption and the effects of the polymerization temperature on the polymerization. The simulated total amount of active species, which only increases quickly at the beginning of the polymerization, indicates that the stationary state assumption in the studied system is valid. Moreover, significant effects of polymerization temperature on the polymerization conversion, and the molecular weight and its distribution were also analyzed. The simulated results show that the consumption rate of propylene increases with the increase of polymerization temperature; the maximum values of the number-average degree of polymerization are constant at different polymerization temperatures, however, the peak appears earlier with the higher temperature; as the polymerization temperature increases, the average molecular weight decreases and the molecular weight distribution changes greatly.
基金Projects(50831003,51071065,51101022,51102090) supported by the National Natural Science Foundation of China
文摘The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
基金Project (2006CB600902) supported by the National Basic Research Program of China
文摘Glass-like carbons (GCs) were prepared by carbonization of acetone-furfural resin in nitrogen atmosphere at 850℃, followed by heat treatment over a range of 1 200-2 500℃in inert atmosphere. The effect of heat treatment temperature (HTT) on the oxidation behavior was investigated by dynamic and isothermal thermogravimetric analyses. The structure of GC was examined by X-ray diffractometry (XRD) and the morphologies of GC before and after oxidation were examined by scanning electron microscopy (SEM). It is shown that the GC samples present peculiar oxidation behavior. The anti-oxidation behavior increases with increasing the HTT to 1 600 ℃, whereas decreases gradually thereafter. GC sample heat treated at 1 600℃ obtains relatively optimal anti-oxidation properties under this condition. During the oxidation, this material produces grid network matrix surface and numerous nodular residues on the surface, resulting in excellent resistance to the attack of oxygen atoms.
文摘Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO - 3 N, NO - 2 N, NH + 4 N, SiO 2- 3 Si, PO 3- 4 P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C , the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D , the coefficient of water temperature’s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant nutrient concentrations but low phytoplankton biomass in some waters is reasonably explained in this paper.
文摘The volatilization kinetics of senarmontite(Sb_2O_3) was analyzed in a neutral atmosphere in two temperature ranges: 550-615 °C(roasting temperature) and 660-1100 °C(melting temperature) by using a thermogravimetric analysis method under various gas flow rates and using a 1.3 m L ceramic crucible(11 mm in internal diameter and 14 mm in height). The effect of particle size was also analyzed. The experimental results of mass loss data, X-ray diffraction(XRD) analysis of partially reacted samples and thermodynamic studies indicate that the senarmontite becomes volatile in the form of Sb_4O_6(g) without the formation of any intermediary compound in the entire temperature range. At roasting temperatures, the volatilization kinetics of Sb_2O_3 was analyzed using the model X=kappt. The volatilization reaction was controlled by the surface chemical reaction and an activation energy value of 193.0 k J/mol was obtained in this temperature range. Based on the volatilization kinetics at the melting temperatures, for linear behaviour in nitrogen gas, kinetic constants were determined, and an activation energy of 73.9 k J/mol was calculated for the volatilization reaction with a surface area of 8.171×10^(-5)m^2.