A new intelligent temperature control system for stove was introduced. It could accomplish A/D conversion, data processing, output displaying and alarming while the temperature exceeds the given threshold. The tempera...A new intelligent temperature control system for stove was introduced. It could accomplish A/D conversion, data processing, output displaying and alarming while the temperature exceeds the given threshold. The temperature adjusting devices were bi direction SCR and heating resistor. The hardware and software were discussed in the paper.展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, ...Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, three control algorithms were used as implemented in microprocessor temperature controls. The analysis aimed at determination of influence of the control algorithm upon quality of the buming process in conditions of actual demand for thermal energy. The detailed analysis of operating parameters in relation to the variable thermal load of the boiler provided necessary information and made it possible to state that control algorithms do influence quality of the controlled process. Particular attention was paid to a situation, in which demand for thermal energy is decreased.展开更多
文摘A new intelligent temperature control system for stove was introduced. It could accomplish A/D conversion, data processing, output displaying and alarming while the temperature exceeds the given threshold. The temperature adjusting devices were bi direction SCR and heating resistor. The hardware and software were discussed in the paper.
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
文摘Analysis was performed on the boiler for solid fuels in a corresponding real-thermal load. The tests were conducted with the use of a low-temperature top-loading KWSM water boiler. For control of the burning process, three control algorithms were used as implemented in microprocessor temperature controls. The analysis aimed at determination of influence of the control algorithm upon quality of the buming process in conditions of actual demand for thermal energy. The detailed analysis of operating parameters in relation to the variable thermal load of the boiler provided necessary information and made it possible to state that control algorithms do influence quality of the controlled process. Particular attention was paid to a situation, in which demand for thermal energy is decreased.