A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase ...A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows. It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced. An extension of the standard k-e turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity.展开更多
The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale paramete...The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale parameters. Therefore,we plan to perform turbulent hydrodynamics experiments in HED plasmas(TurboHEDP) in order to improve our understanding of such important phenomena for interest in both communities: laser plasma physics and astrophysics. We will focus on the physics of supernovae remnants which are complex structures subject to fluid instabilities such as the Rayleigh–Taylor and Kelvin–Helmholtz instabilities. The advent of megajoule laser facilities, like the National Ignition Facility and the Laser Megajoule, creates novel opportunities in laboratory astrophysics, as it provides unique platforms to study turbulent mixing flows in HED plasmas. Indeed, the physics requires accelerating targets over larger distances and longer time periods than previously achieved. In a preparatory phase, scaling from experiments at lower laser energies is used to guarantee the performance of future MJ experiments. This subscale experiments allow us to develop experimental skills and numerical tools in this new field of research, and are stepping stones to achieve our objectives on larger laser facilities. We review first in this paper recent advances in high energy density experiments devoted to laboratory astrophysics. Then we describe the necessary steps forward to commission an experimental platform devoted to turbulent hydrodynamics on a megajoule laser facility. Recent novel experimental results acquired on LULI2000, as well as supporting radiative hydrodynamics simulations, are presented. Together with the development of LiF detectors as transformative X-ray diagnostics, these preliminary results are promising on the way to achieve micrometric spatial resolution in turbulent HED physics experiments in the near future.展开更多
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible tur...Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.展开更多
The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are b...The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are based on Eulerian framework,which is not enough for developing the probability density function(PDF) model.In this paper,the instantous behavior and multi-particle statistics of passive scalar along inertial particle trajectory,in homogenous isotropic turbulence with a mean scalar gradient,are investigated by using the direct numerical simulation(DNS).The results show that St^1.0 particles are easy to aggregate in high strain and low vorticity regions in the fluid field,where the scalar dissipation is usually much higher than the mean value,and that every time they move across the cliff structures,the scalar change is much more intensive.Anyway,the self-correlation of scalar along particle trajectory is significantly different from the velocities observed by particle,for which the prefer-concentration effect is evident.The mechanical-to-thermal time scale ratio averaged along the particles,<r> p,is approximately two times smaller than that computed in the Eulerian frame r,and stays at nearly 1.77 with a weak dependence on particle inertia.展开更多
基金Supported by the Spanish CICYTR &D National Programs,under contract PB91-0699.
文摘A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows. It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced. An extension of the standard k-e turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity.
基金supported by the Agence Nationale de la Recherche under the ANR project TurboHEDP(ANR-15-CE30-0011)
文摘The physics of compressible turbulence in high energy density(HED) plasmas is an unchartered experimental area.Simulations of compressible and radiative flows relevant for astrophysics rely mainly on subscale parameters. Therefore,we plan to perform turbulent hydrodynamics experiments in HED plasmas(TurboHEDP) in order to improve our understanding of such important phenomena for interest in both communities: laser plasma physics and astrophysics. We will focus on the physics of supernovae remnants which are complex structures subject to fluid instabilities such as the Rayleigh–Taylor and Kelvin–Helmholtz instabilities. The advent of megajoule laser facilities, like the National Ignition Facility and the Laser Megajoule, creates novel opportunities in laboratory astrophysics, as it provides unique platforms to study turbulent mixing flows in HED plasmas. Indeed, the physics requires accelerating targets over larger distances and longer time periods than previously achieved. In a preparatory phase, scaling from experiments at lower laser energies is used to guarantee the performance of future MJ experiments. This subscale experiments allow us to develop experimental skills and numerical tools in this new field of research, and are stepping stones to achieve our objectives on larger laser facilities. We review first in this paper recent advances in high energy density experiments devoted to laboratory astrophysics. Then we describe the necessary steps forward to commission an experimental platform devoted to turbulent hydrodynamics on a megajoule laser facility. Recent novel experimental results acquired on LULI2000, as well as supporting radiative hydrodynamics simulations, are presented. Together with the development of LiF detectors as transformative X-ray diagnostics, these preliminary results are promising on the way to achieve micrometric spatial resolution in turbulent HED physics experiments in the near future.
基金supported by the National Natural Science Foundation of China (Grant No. 11102079)the Aeronautical Science Foundation of China (Grant No. 20111456005)
文摘Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50936001,51021065,50976042)the State Key Fundamental Research Program,Ministry of Science and Technology,China (Grant Nos. 2010CB227004,2011CB707301)
文摘The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are based on Eulerian framework,which is not enough for developing the probability density function(PDF) model.In this paper,the instantous behavior and multi-particle statistics of passive scalar along inertial particle trajectory,in homogenous isotropic turbulence with a mean scalar gradient,are investigated by using the direct numerical simulation(DNS).The results show that St^1.0 particles are easy to aggregate in high strain and low vorticity regions in the fluid field,where the scalar dissipation is usually much higher than the mean value,and that every time they move across the cliff structures,the scalar change is much more intensive.Anyway,the self-correlation of scalar along particle trajectory is significantly different from the velocities observed by particle,for which the prefer-concentration effect is evident.The mechanical-to-thermal time scale ratio averaged along the particles,<r> p,is approximately two times smaller than that computed in the Eulerian frame r,and stays at nearly 1.77 with a weak dependence on particle inertia.