地震产生的周期荷载作用下,钢混桥墩结构表现出滞回行为。为描述滞回行为,研究者提出各类滞回模型,其中BWBN(Bouc-Wen-Baber-Noori)模型可以描述结构滞回行为的强度退化、刚度退化和捏拢效应等典型特征。此外,无迹卡尔曼滤波器UKF(unsce...地震产生的周期荷载作用下,钢混桥墩结构表现出滞回行为。为描述滞回行为,研究者提出各类滞回模型,其中BWBN(Bouc-Wen-Baber-Noori)模型可以描述结构滞回行为的强度退化、刚度退化和捏拢效应等典型特征。此外,无迹卡尔曼滤波器UKF(unscented Kalman filter)算法是识别BWBN模型参数的高效方法,但当参数初始值与真实值的偏差过大及缺乏对系统的整体估计时,UKF算法识别过程受到局限。本文改进生成样本点规则,提出改进UKF算法。数值模拟结果表明,在无噪声条件下,改进UKF算法识别得到的参数估计值与准确值的误差平均为1.51%,最大误差为4%;在2%均方根RMS(root mean square)高斯白噪声条件下,误差平均为5.43%,最大误差为18%;在5%RMS高斯白噪声条件下,误差平均为8.9%,最大误差为26%和22%。改进UKF算法识别非线性滞回系统状态估计和BWBN模型参数更加准确和稳定。展开更多
文摘地震产生的周期荷载作用下,钢混桥墩结构表现出滞回行为。为描述滞回行为,研究者提出各类滞回模型,其中BWBN(Bouc-Wen-Baber-Noori)模型可以描述结构滞回行为的强度退化、刚度退化和捏拢效应等典型特征。此外,无迹卡尔曼滤波器UKF(unscented Kalman filter)算法是识别BWBN模型参数的高效方法,但当参数初始值与真实值的偏差过大及缺乏对系统的整体估计时,UKF算法识别过程受到局限。本文改进生成样本点规则,提出改进UKF算法。数值模拟结果表明,在无噪声条件下,改进UKF算法识别得到的参数估计值与准确值的误差平均为1.51%,最大误差为4%;在2%均方根RMS(root mean square)高斯白噪声条件下,误差平均为5.43%,最大误差为18%;在5%RMS高斯白噪声条件下,误差平均为8.9%,最大误差为26%和22%。改进UKF算法识别非线性滞回系统状态估计和BWBN模型参数更加准确和稳定。