A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effec...A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.展开更多
Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusio...Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusion of the resulting leaching residues with caustic soda. The experimental results show that the extraction of zinc is heavily dependent on the contents of iron in the dusts. The higher iron content, the lower extraction of zinc is obtained. 53% and 38% of zinc can be extracted when both dusts were directly contacted with 5mol·L^-1 NaOH solution for 42h. The remaining zinc left in the leaching residues, which supposed to be present as zinc ferrites, can be further leached when the residues were fused with caustic soda. Quantitative extraction of zinc can be obtained from the leaching residue of Sample A while only 85% from Sample B. The extractability of zinc from dusts wit hvarious contents of iron is compared. The production flowsheet for zinc from the dusts using the process proposed is discussed.展开更多
Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A c...Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.展开更多
In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasin...In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.展开更多
The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature...The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature were investigated in desulfurization experiments. The X-ray diffraction(XRD) and X-ray fluorescence(XRF) analyses show that the optimum conditions are LSS:ISS of 3:7 and temperature of 1350°C. The composition of desulfurization products is mainly Zn Fe2O4, and the desulfurization rate of 99.66% is obtained under optimum conditions. The thermogravimetric(TG) and differential scanning calorimeter(DSC) analyses demonstrate that reductant is necessary for decomposition and reduction of zinc ferrite in desulfurization product. The effects of reductant, temperature and feeding modes on iron enrichment were investigated in reduction experiments. The scanning electron microscope(SEM) and energy dispersive spectrometer(EDS) determination show that the iron content of reduction product is up to 99.36% under optimum conditions of coke as reductant, reduction temperature of 1450°C and the feeding mode of premixing.展开更多
An optimized selective sequential extraction(SSE)procedure was developed to assess the arsenic(As)partitioning in copper slag.The potential As species in copper slag are partitioned into the readily soluble As,dissolv...An optimized selective sequential extraction(SSE)procedure was developed to assess the arsenic(As)partitioning in copper slag.The potential As species in copper slag are partitioned into the readily soluble As,dissolvable arsenates,sparingly soluble arsenates,As residing in sulfides,arsenopyrite and metal As,as well as As incorporated into glassy silicates.The inductively coupled plasma atomic emission spectrometry(ICP-AES),scanning electronic microscopy(SEM),transmission electron microscope(TEM),X-ray diffractometry(XRD)and Fourier transform infrared spectroscopy(FTIR)were used to characterize the leachates and residues produced from the operation scheme.The selectivity and recovery of extractants were evaluated through single-phase extraction procedures.Partitioning data of As in slag samples show good agreement with the reported works and the total As recovery of each operation is over 90%.This suggests that the optimized SEE scheme can be reliably employed for As partitioning in As-bearing byproducts from copper smelting.展开更多
基金the support from the National Key R&D Program of China(No.2018YFC1901606).
文摘A validated numerical model was established to simulate gas−liquid flow behaviors in the oxygen-enriched side-blown bath furnace.This model included the slip velocity between phases and the gas thermal expansion effect.Its modeling results were verified with theoretical correlations and experiments,and the nozzle-eroded states in practice were also involved in the analysis.Through comparison,it is confirmed that the thermal expansion effect influences the flow pattern significantly,which may lead to the backward motion of airflow and create a potential risk to production safety.Consequently,the influences of air injection velocity and furnace width on airflow behavior were investigated to provide operating and design guidance.It is found that the thin layer melt,which avoids high-rate oxygen airflow eroding nozzles,shrinks as the injection velocity increases,but safety can be guaranteed when the velocity ranges from 175 to 275 m/s.Moreover,the isoline patterns and heights of thin layers change slightly when the furnace width increases from 2.2 to 2.8 m,indicating that the furnace width shows a limited influence on production safety.
文摘Extractability of zinc from two types of electric arc furnace (EAF) dusts containing 24.8% and 16.8% of zinc respectively (denoted as Sample A and Sample B) were tested using direct alkaline leaching followed by fusion of the resulting leaching residues with caustic soda. The experimental results show that the extraction of zinc is heavily dependent on the contents of iron in the dusts. The higher iron content, the lower extraction of zinc is obtained. 53% and 38% of zinc can be extracted when both dusts were directly contacted with 5mol·L^-1 NaOH solution for 42h. The remaining zinc left in the leaching residues, which supposed to be present as zinc ferrites, can be further leached when the residues were fused with caustic soda. Quantitative extraction of zinc can be obtained from the leaching residue of Sample A while only 85% from Sample B. The extractability of zinc from dusts wit hvarious contents of iron is compared. The production flowsheet for zinc from the dusts using the process proposed is discussed.
基金Project 50636010 supported by the National Natural Science Foundation of China
文摘Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.
基金Project(51204082)supported by the National Natural Science Foundation of ChinaProject(KKZ3201252011)supported by Talent Cultivation Project of Kunming University of Science and Technology,China
文摘In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.
基金Project(2011AA061003)supported by the National High Technology Research and Development Program of China
文摘The recovery of iron from iron sinking slag and lead smelter slag was investigated by desulfurization-reduction bath smelting. The effects of lead smelter slag(LSS) to iron sinking slag(ISS) mass ratio and temperature were investigated in desulfurization experiments. The X-ray diffraction(XRD) and X-ray fluorescence(XRF) analyses show that the optimum conditions are LSS:ISS of 3:7 and temperature of 1350°C. The composition of desulfurization products is mainly Zn Fe2O4, and the desulfurization rate of 99.66% is obtained under optimum conditions. The thermogravimetric(TG) and differential scanning calorimeter(DSC) analyses demonstrate that reductant is necessary for decomposition and reduction of zinc ferrite in desulfurization product. The effects of reductant, temperature and feeding modes on iron enrichment were investigated in reduction experiments. The scanning electron microscope(SEM) and energy dispersive spectrometer(EDS) determination show that the iron content of reduction product is up to 99.36% under optimum conditions of coke as reductant, reduction temperature of 1450°C and the feeding mode of premixing.
基金Projects(51874257,51374185,51801183)supported by the National Natural Science Foundation of China。
文摘An optimized selective sequential extraction(SSE)procedure was developed to assess the arsenic(As)partitioning in copper slag.The potential As species in copper slag are partitioned into the readily soluble As,dissolvable arsenates,sparingly soluble arsenates,As residing in sulfides,arsenopyrite and metal As,as well as As incorporated into glassy silicates.The inductively coupled plasma atomic emission spectrometry(ICP-AES),scanning electronic microscopy(SEM),transmission electron microscope(TEM),X-ray diffractometry(XRD)and Fourier transform infrared spectroscopy(FTIR)were used to characterize the leachates and residues produced from the operation scheme.The selectivity and recovery of extractants were evaluated through single-phase extraction procedures.Partitioning data of As in slag samples show good agreement with the reported works and the total As recovery of each operation is over 90%.This suggests that the optimized SEE scheme can be reliably employed for As partitioning in As-bearing byproducts from copper smelting.