采用模拟多孔材料拉伸试验,建立了含孔洞型损伤管线钢的宏观力学性能退化规律模型。结果表明:管线钢的弹性模量和屈服强度随孔隙率的增大而显著降低,对于X70管线钢,当孔隙率达到50%时,材料表观弹性模量和屈服强度降为零。基于损伤理论...采用模拟多孔材料拉伸试验,建立了含孔洞型损伤管线钢的宏观力学性能退化规律模型。结果表明:管线钢的弹性模量和屈服强度随孔隙率的增大而显著降低,对于X70管线钢,当孔隙率达到50%时,材料表观弹性模量和屈服强度降为零。基于损伤理论,将用于评价体积型缺陷的API RP 579公式进行了改进,建立了点腐蚀损伤管道的剩余强度评价公式。算例分析结果表明:将点腐蚀缺陷简化为局部腐蚀缺陷,其保守程度随点腐蚀深度增加而增大,当最大点腐蚀深度小于t/10时,这种简化处理在工程上可以接受。展开更多
文摘采用模拟多孔材料拉伸试验,建立了含孔洞型损伤管线钢的宏观力学性能退化规律模型。结果表明:管线钢的弹性模量和屈服强度随孔隙率的增大而显著降低,对于X70管线钢,当孔隙率达到50%时,材料表观弹性模量和屈服强度降为零。基于损伤理论,将用于评价体积型缺陷的API RP 579公式进行了改进,建立了点腐蚀损伤管道的剩余强度评价公式。算例分析结果表明:将点腐蚀缺陷简化为局部腐蚀缺陷,其保守程度随点腐蚀深度增加而增大,当最大点腐蚀深度小于t/10时,这种简化处理在工程上可以接受。