期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
点面电极直接放电在水处理中的应用
1
作者 黄民双 王明建 +1 位作者 邓林根 程苗 《水处理技术》 CAS CSCD 北大核心 2024年第3期20-25,共6页
液体中直接放电技术对于水处理等领域的发展起到了很好的促进作用,本文以液体中直接放电的电极结构设计为主线,介绍了基本的液体中点-面电极放电发生器的设计思想,分析了不同电极构型放电发生器的优势与不足,列举了目前用于水处理的多点... 液体中直接放电技术对于水处理等领域的发展起到了很好的促进作用,本文以液体中直接放电的电极结构设计为主线,介绍了基本的液体中点-面电极放电发生器的设计思想,分析了不同电极构型放电发生器的优势与不足,列举了目前用于水处理的多点-面、线-面(筒)、多孔陶瓷电极等较大体积放电发生器的结构特点及设计,总结了实际应用中液体中点面电极直接放电技术提升所面临的挑战。 展开更多
关键词 液体放电 点面电极 大体积放电 水处理
原文传递
点面电极系统低频流体驱动机理
2
作者 姜洪源 霍彦婷 +3 位作者 任玉坤 李姗姗 陶冶 Antonio Ramos 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第5期56-60,共5页
为了弥补传统交流电动力学理论在解释微流体反向流动方面的不足,开发了一种新型三维点面电极系统并进行微流体驱动实验,分析了低频条件下电化学、交流电热等因素对微流体驱动的影响.实验结果表明,点面电极系统中广频范围内(10~3×1... 为了弥补传统交流电动力学理论在解释微流体反向流动方面的不足,开发了一种新型三维点面电极系统并进行微流体驱动实验,分析了低频条件下电化学、交流电热等因素对微流体驱动的影响.实验结果表明,点面电极系统中广频范围内(10~3×106Hz)的微流体流动方向均为由点电极流向面电极,这一现象与利用交流电渗理论预测的流体流动方向相反.实验验证了低频条件下电化学反应在流体流动中的重要作用.结果表明,电化学反应是点面电极系统中低频条件下微流体流动现象的主要因素. 展开更多
关键词 点面电极 低频 电化学反应 交流电热
下载PDF
Effect of chemical plating Zn on DC-etching behavior of Al foil in HCl-H_2SO_4 被引量:4
3
作者 班朝磊 何业东 +2 位作者 邵鑫 杜鹃 王利平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3650-3657,共8页
The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such ... The Al foil for high voltage Al electrolytic capacitor usage was immersed in 5.0%NaOH solution containing trace amount of Zn2+and Zn was chemically plated on its surface through an immersion-reduction reaction. Such Zn-deposited Al foil was quickly transferred into HCl-H 2 SO 4 solution for DC-etching. The effects of Zn impurity on the surface and cross-section etching morphologies and electrochemical behavior of Al foil were investigated by SEM, polarization curve (PC) and electrochemical impedance spectroscopy (EIS). The special capacitance of 100 V formation voltage of etched foil was measured. The results show that the chemical plating Zn on Al substrate in alkali solution can reduce the pitting corrosion resistance, enhance the pitting current density and improve the density and uniform distribution of pits and tunnels due to formation of the micro Zn-Al galvanic local cells. The special capacitance of etched foil grows with the increase of Zn2+concentration. 展开更多
关键词 Al foil POLARIZATION pitting corrosion electrochemical etching Al electrolytic capacitor
下载PDF
Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes 被引量:2
4
作者 Sangbaek Park Donghoe Kim +5 位作者 Chan Woo Lee Seong-Deok Seo Hae Jin Kim Hyun Soo Han Kug Sun Hong Dong-Wan Kim 《Nano Research》 SCIE EI CAS CSCD 2014年第1期144-153,共10页
Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enha... Harvesting solar energy to produce clean hydrogen from photoelectrolysis of water presents a valuable opportunity to find alternatives for fossil fuels. Three- dimensional nanoarchitecturing techniques can afford enhanced photoelectrochemical properties by improving geometrical and structural effects. Here, we report quantum-dot sensitized TiO2-Sb:SnO2 heterostructures as a model electrode to enable the optimization of the structural effects through the creation of a highly conductive pathway using a transparent conducting oxide (TCO), coupled with a high surface area, by introducing branching and low interfacial resistance via an epitaxial relationship. An examination of various morphologies (dot, rod, and lamella shape) of TiO2 reveals that the rod-shaped TiO2-Sb:SnO2 is a more effective structure than the others. A photoelectrode fabricated using optimized CdS--TiO2-Sb:SnO2 produces a photocurrent density of 7.75 mA/cm2 at 0.4 V versus a reversible hydrogen electrode. These results demonstrate that constructing a branched heterostructure based on TCO can realize highperformance photoelectrochemical devices. 展开更多
关键词 PHOTOELECTROCHEMICAL hydrogen evolution antimony-doped tinoxide TiO2 quantum dot
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部