The direct synthesis of C2 hydrocarbons (ethylene, acetylene and ethane) from methane is one of the most important task in C1 chemistry. Higher conversion of methane and selectivity to C2 hydrocarbons can be real-iz...The direct synthesis of C2 hydrocarbons (ethylene, acetylene and ethane) from methane is one of the most important task in C1 chemistry. Higher conversion of methane and selectivity to C2 hydrocarbons can be real-ized through plasma reaction. In order to explore the reaction process and mechanism, the possible reaction paths (1)—(4) were proposed on coupling reaction of methane through plasma and studied theoretically using semi-PM3 method [PM3 is parameterization method of modified neglect of diatomic overlap (MNDO)] including determining the transition state, calculating the activation energy and thermodynamic state functions and analyzing the bond or-der and intrinsic reaction coordinate. The reaction heat results indicate that the reactions (2) and (4) are exothermic, while reactions of (1) and (3) are endothermic. The activation energy results show that activation energy for reac-tions (1) and (2) was much lower than that of reaction paths (3) and (4). Therefore, paths (1) and (2) is the favorable reaction path energetically. More interestingly by comparing the intrinsic reaction coordinated (IRC) of the reaction paths (1) and (2), it is found that the variations of bond lengths in reaction path (1) has a crucial effect on the poten-tial energy, while in reaction path (2), the adjustment of the system geometry also contributes to the whole potential energy of the system.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
基金Supported by the National Natural Science Foundation of China (No.20606023).
文摘The direct synthesis of C2 hydrocarbons (ethylene, acetylene and ethane) from methane is one of the most important task in C1 chemistry. Higher conversion of methane and selectivity to C2 hydrocarbons can be real-ized through plasma reaction. In order to explore the reaction process and mechanism, the possible reaction paths (1)—(4) were proposed on coupling reaction of methane through plasma and studied theoretically using semi-PM3 method [PM3 is parameterization method of modified neglect of diatomic overlap (MNDO)] including determining the transition state, calculating the activation energy and thermodynamic state functions and analyzing the bond or-der and intrinsic reaction coordinate. The reaction heat results indicate that the reactions (2) and (4) are exothermic, while reactions of (1) and (3) are endothermic. The activation energy results show that activation energy for reac-tions (1) and (2) was much lower than that of reaction paths (3) and (4). Therefore, paths (1) and (2) is the favorable reaction path energetically. More interestingly by comparing the intrinsic reaction coordinated (IRC) of the reaction paths (1) and (2), it is found that the variations of bond lengths in reaction path (1) has a crucial effect on the poten-tial energy, while in reaction path (2), the adjustment of the system geometry also contributes to the whole potential energy of the system.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.