期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
超高速流动模拟及热化学反应模型对比研究 被引量:2
1
作者 周凯 李旭东 +1 位作者 胡宗民 姜宗林 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第6期1173-1181,共9页
超高速流动是飞行器再入大气层时所面临的高速高温流动环境,膨胀管是少数几种能模拟超高速流动的地面设备之一。采用数值模拟方法对超高速试验进行辅助分析诊断,流动模拟时热化学反应模型的选择对流场特性影响较大,分别选择5组分、11组... 超高速流动是飞行器再入大气层时所面临的高速高温流动环境,膨胀管是少数几种能模拟超高速流动的地面设备之一。采用数值模拟方法对超高速试验进行辅助分析诊断,流动模拟时热化学反应模型的选择对流场特性影响较大,分别选择5组分、11组分热平衡及5组分热非平衡模型,对比研究3种不同热化学反应模型对双楔试验模型数值模拟结果的影响,以进一步评估超高速流动模拟时热化学反应模型的适用范围。结果表明,试验气流条件下5组分化学模型即可满足要求,加速气流条件则必须采取11组分化学模型,而对于流动中热非平衡效应显著时,热化学非平衡模型更为适用。 展开更多
关键词 超高速 膨胀管 数值模拟 热化学反应模型 适用范围
原文传递
Analytical Model for Predicting the Heat Loss Effect on the Pyrolysis of Biomass Particles 被引量:1
2
作者 Alireza Rahbari Fatemeh Ebrahiminasab Mehdi Bidabadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第10期1114-1120,共7页
This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly prem... This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research. 展开更多
关键词 analytical model heat loss RADIATION particle size PYROLYSIS tlame temperature burning velocity
下载PDF
Mathematical model for coupled reactive flow and solute transport during heap bioleaching of copper sulfide 被引量:5
3
作者 尹升华 吴爱祥 +1 位作者 李希雯 王贻明 《Journal of Central South University》 SCIE EI CAS 2011年第5期1434-1440,共7页
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran... Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process. 展开更多
关键词 copper sulphide heap bioleaching leaching reaction solution flow solute transport
下载PDF
Simulation of Continuous Esterification Process of Polyester Polyols 被引量:2
4
作者 陈礼科 奚桢浩 +2 位作者 秦榛 赵玲 袁渭康 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期246-252,共7页
Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling ... Based on the kinetic and thermodynamic equations, a comprehensive mathematical model for the con- tinuous esterification process of polyester polyols was developed, which was carried out in an innovational bub- bling reactive distillation tower (BRDT) at atmospheric pressure. In this new type of reactor, direct esterification between ethylene glycol and adipic acid was accomplished efficiently and rapidly. A bench BRDT with the height of 2 m was applied for the esteriflcation process of l^oly (ethylene adlpate) (P'EA). In the continuous operation, Hn- ear oligomers were discharged from the bottom of the column, while water passed a few column trays and a pack- ing section as a condensation byproduct. The influence of major operating conditions on reactor performance was also simulated. Simulation results were in good agreement with experimental data, providing a strategy for devel- oping and optimizing this process. 展开更多
关键词 poly (ethylene adipate) ESTERIFICATION continuous operation mathematical model reactive distillation
下载PDF
Modeling of Solar Thermochemical Receiver
5
作者 A. Torres R. Lugo +1 位作者 M. Salazar E. Bonilla 《Journal of Energy and Power Engineering》 2011年第11期1015-1020,共6页
This work provides information for an optimal design of a thermochemical storage system, through a proposed mathematical model that predicts the behavior of a solar fluidized bed receiver finding the temperature and c... This work provides information for an optimal design of a thermochemical storage system, through a proposed mathematical model that predicts the behavior of a solar fluidized bed receiver finding the temperature and concentration profiles in transient state. The mathematical model is developed for a fluidized bed solar reactor, taking into account dynamics conditions of heating and reaction. The heating was simulated for radiated flux with a normal distribution over lateral walls and with distributed flow conditions of the focal stain. The contraction and expansion effects of the bed were involved with a two dimensional distribution. The mathematical model of a solar fluidized bed reactor involves a reversible chemistry reaction of thermal dissociation of the zinc sulfate (ZnSO4), also the mathematical model is accomplished by a sensitivity study with regard to the gas inlet temperature and radiation flux. 展开更多
关键词 THERMOCHEMICAL fluidized bed solar reactor dissociation of the zinc sulfate.
下载PDF
Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier
6
作者 薛爱军 潘继红 +1 位作者 田茂诚 伊晓璐 《Transactions of Tianjin University》 EI CAS 2016年第2期174-181,共8页
By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolys... By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a onedimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyrolysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter. 展开更多
关键词 downdraft gasifier pyrolysis model single biomass pellet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部