The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
Heat transfer,friction factor and thermal enhancement factor characteristics of a double pipe heat exchanger fitted with square-cut twisted tapes(STT) and plain twisted tapes(PTT) are investigated experimentally u...Heat transfer,friction factor and thermal enhancement factor characteristics of a double pipe heat exchanger fitted with square-cut twisted tapes(STT) and plain twisted tapes(PTT) are investigated experimentally using the water as working fluid.The tapes(STT and PTT) have three twist ratios(y=2.0,4.4 and 6.0) and the Reynolds number ranges from 2000 to 12000.The experimental results reveal that heat transfer rate,friction factor and thermal enhancement factor in the tube equipped with STT are significantly higher than those fitted with PTT. The additional disturbance and secondary flow in the vicinity of the tube wall generated by STT are higher compared to that induced by the PTT is referred as the reason for better performance.Over the range considered,the Nusselt number,friction factor and thermal enhancement factor in a tube with STT are respectively,1.03 to 1.14,1.05 to 1.25 and 1.02 to 1.06 times of those in tube with PTT.An empirical correlation is also formulated to match with experimental data of Nusselt number and friction factor for STT and PTT.展开更多
A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. T...A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.展开更多
The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fl...The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.展开更多
Two kinds of unidirectional PAN M40 carbon fiber (55%, volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion p...Two kinds of unidirectional PAN M40 carbon fiber (55%, volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion properties were investigated. Results showed that the combination between aluminum alloy and fibers was well in two composites and interface reaction in M40/5A06Al composite was weaker than that in M40/6061Al composite. Coefficients of thermal expansion (CTE) of M40/Al composites varied approximately from (1.45-2.68)×10^-6 K^-1 to (0.35-1.44)×10^-6 K^-1 between 20℃ and 450℃, and decreased slowly with the increase of temperature. In addition, the CTE of M40/6061Al composite was lower than that of M40/SA06Al composite. It was observed that fibers were protruded significantly from the matrix after thermal expansion, which demonstrated the existence of interface sliding between fiber and matrix during the thermal expansion. It was believed that weak interracial reaction resulted in a higher CTE. It was found that the experimental CTEs were closer to the predicted values by Schapery model.展开更多
Typhoon Maggie (1999) interacted with another tropical depression system and moved along a west-southwest track that is somewhat abnormal during its pre-landing stage. Two numerical experiments are carried out in th...Typhoon Maggie (1999) interacted with another tropical depression system and moved along a west-southwest track that is somewhat abnormal during its pre-landing stage. Two numerical experiments are carried out in this paper to study the effect of the interaction on the track of typhoon Maggie using the mcsoscale numerical weather prediction model system with a tropical cyclone bogusing scheme developed by Center for Coastal and Atmospheric Research, the Hong Kong University of Science and Technology. Results show that the cyclone system interacting with Maggie is the main factor for the abnormal track of Maggie.展开更多
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t...A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.展开更多
Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
文摘Heat transfer,friction factor and thermal enhancement factor characteristics of a double pipe heat exchanger fitted with square-cut twisted tapes(STT) and plain twisted tapes(PTT) are investigated experimentally using the water as working fluid.The tapes(STT and PTT) have three twist ratios(y=2.0,4.4 and 6.0) and the Reynolds number ranges from 2000 to 12000.The experimental results reveal that heat transfer rate,friction factor and thermal enhancement factor in the tube equipped with STT are significantly higher than those fitted with PTT. The additional disturbance and secondary flow in the vicinity of the tube wall generated by STT are higher compared to that induced by the PTT is referred as the reason for better performance.Over the range considered,the Nusselt number,friction factor and thermal enhancement factor in a tube with STT are respectively,1.03 to 1.14,1.05 to 1.25 and 1.02 to 1.06 times of those in tube with PTT.An empirical correlation is also formulated to match with experimental data of Nusselt number and friction factor for STT and PTT.
文摘A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.
基金the Thailand Research Fund(TRF)(Grant No.Ph D/0143/2552)
文摘The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.
基金Project(DL09BB23) supported by the Fundamental Research Funds for the Central Universities in China
文摘Two kinds of unidirectional PAN M40 carbon fiber (55%, volume fraction) reinforced 6061Al and 5A06Al composites were fabricated by the squeeze-casting technology and their interface structure and thermal expansion properties were investigated. Results showed that the combination between aluminum alloy and fibers was well in two composites and interface reaction in M40/5A06Al composite was weaker than that in M40/6061Al composite. Coefficients of thermal expansion (CTE) of M40/Al composites varied approximately from (1.45-2.68)×10^-6 K^-1 to (0.35-1.44)×10^-6 K^-1 between 20℃ and 450℃, and decreased slowly with the increase of temperature. In addition, the CTE of M40/6061Al composite was lower than that of M40/SA06Al composite. It was observed that fibers were protruded significantly from the matrix after thermal expansion, which demonstrated the existence of interface sliding between fiber and matrix during the thermal expansion. It was believed that weak interracial reaction resulted in a higher CTE. It was found that the experimental CTEs were closer to the predicted values by Schapery model.
基金National Natural Science Foundation of China (60572184 40375017)
文摘Typhoon Maggie (1999) interacted with another tropical depression system and moved along a west-southwest track that is somewhat abnormal during its pre-landing stage. Two numerical experiments are carried out in this paper to study the effect of the interaction on the track of typhoon Maggie using the mcsoscale numerical weather prediction model system with a tropical cyclone bogusing scheme developed by Center for Coastal and Atmospheric Research, the Hong Kong University of Science and Technology. Results show that the cyclone system interacting with Maggie is the main factor for the abnormal track of Maggie.
基金Supported by National Basic Research Program of China("973"Program,No.2011CB707203)
文摘A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.