The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described b...The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.展开更多
On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of p...On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.展开更多
We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact...We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact solutions reveal that quantum signatures of chaos can be induced by the adiabatic interaction between the trapped ion and the laser standing wave, where the quantum expectation values of position and momentum correspond to the classically chaotic orbit. The chaotic region on the phase space is illustrated. The energy crossing and quantum resonance in time evolution and the exponentially increased Heisenberg uncertainty are found. The results suggest a theoretical scheme for controlling the unstable regular and chaotic motions.展开更多
In order to obtain the thermodynamic description of the Mg-Ga binary system,the thermodynamic assessment of the system was carried out using the CALPHAD method through Thermo-calc software package based on the evaluat...In order to obtain the thermodynamic description of the Mg-Ga binary system,the thermodynamic assessment of the system was carried out using the CALPHAD method through Thermo-calc software package based on the evaluation of all available experimental data from the published literature.The solution phases,including liquid,hcp(Mg) and orthorhombic(Ga),were described by the substitutional solution model,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.Meanwhile,all intermetallic compounds,Mg5Ga2,Mg2Ga,MgGa,MgGa2 and Mg2Ga5,were modeled as stoichiometric compounds.A set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in the Mg-Ga binary system were obtained finally.The much better agreement is achieved between the calculated results and the reported experimental data.展开更多
Three phosphate fertilizers from fossil and secondary starting materials have been assessed for their accumulated environmental footprint. Fertiliser types have been selected for their similarity in terms of phosphate...Three phosphate fertilizers from fossil and secondary starting materials have been assessed for their accumulated environmental footprint. Fertiliser types have been selected for their similarity in terms of phosphate and secondary nutrient concentrations and small waste flows, although significant and unavoidable differences in terms of phosphate solubility remain. Input data were taken from literature and from process simulations in Aspen Plus and HSC Chemistry, being based on evaluations of plants in operation or under construction. It was tested and confirmed that HSC Chemistry data can be directly exported to GaBi as an LCA evaluation tool. The paper shows in two cases a positive energy balance and a rather low environmental footprint of all three assessed processes.展开更多
An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the...An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole(IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.展开更多
Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state t...Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.展开更多
The experimental phase equilibria of the Mn-Si-Zn system available in the literature were critically evaluated.Thermodynamic assessment of the Mn-Si-Zn system was then performed in the framework of CALPHAD(CALculation...The experimental phase equilibria of the Mn-Si-Zn system available in the literature were critically evaluated.Thermodynamic assessment of the Mn-Si-Zn system was then performed in the framework of CALPHAD(CALculation of PHAse Diagram) method on the basis of the experimental data in the literature.The optimal thermodynamic parameters of the ternary system were then obtained,yielding a good agreement with most of the experimental data.The complete liquidus projection and reaction scheme was also presented for the Mn-Si-Zn system.It is noteworthy that a stable closed liquid miscibility gap appears in the computed ternary phase diagrams,even though it is metastable in three boundary binaries.The occurrence of such a closed miscibility gap can be predicted by a criterion considering the general thermodynamic rules and the features of the three constituent binary systems.展开更多
The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war...The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.展开更多
基金Project (50871028) supported by the National Natural Science Foundation of ChinaProjects (N100702001,N090502002) supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project (NCET-09-0272) supported by the Program for New Century Excellent Talents in University of Ministry of Education, ChinaProject (200803) supported by Northeastern University Research Foundation for Doctor Candidates,China
文摘The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.
基金Project(51271027)supported by the National Natural Science Foundation of ChinaProject(T201308)supported by Shenzhen Key Laboratory of Special Functional Materials of Shenzhen University,China
文摘On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.
基金The project supported by National Natural Science Foundation of China under Grant No.10575034the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China under Grant No.T152504
文摘We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact solutions reveal that quantum signatures of chaos can be induced by the adiabatic interaction between the trapped ion and the laser standing wave, where the quantum expectation values of position and momentum correspond to the classically chaotic orbit. The chaotic region on the phase space is illustrated. The energy crossing and quantum resonance in time evolution and the exponentially increased Heisenberg uncertainty are found. The results suggest a theoretical scheme for controlling the unstable regular and chaotic motions.
基金Project supported by Scientific Research Foundation for Advanced Talents in Central South University of Forestry and Technology,ChinaProject(50731002) supported by the National Natural Science Foundation of China
文摘In order to obtain the thermodynamic description of the Mg-Ga binary system,the thermodynamic assessment of the system was carried out using the CALPHAD method through Thermo-calc software package based on the evaluation of all available experimental data from the published literature.The solution phases,including liquid,hcp(Mg) and orthorhombic(Ga),were described by the substitutional solution model,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.Meanwhile,all intermetallic compounds,Mg5Ga2,Mg2Ga,MgGa,MgGa2 and Mg2Ga5,were modeled as stoichiometric compounds.A set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in the Mg-Ga binary system were obtained finally.The much better agreement is achieved between the calculated results and the reported experimental data.
文摘Three phosphate fertilizers from fossil and secondary starting materials have been assessed for their accumulated environmental footprint. Fertiliser types have been selected for their similarity in terms of phosphate and secondary nutrient concentrations and small waste flows, although significant and unavoidable differences in terms of phosphate solubility remain. Input data were taken from literature and from process simulations in Aspen Plus and HSC Chemistry, being based on evaluations of plants in operation or under construction. It was tested and confirmed that HSC Chemistry data can be directly exported to GaBi as an LCA evaluation tool. The paper shows in two cases a positive energy balance and a rather low environmental footprint of all three assessed processes.
基金the National Basic Research Program of China(973 Program)(No.2012CB956000)the Strategic Priority Project of Chinese Academy of Sciences(No.XDA11010301)+2 种基金the National Natural Science Foundation of China(Nos.41421005,U1406401)the Public Welfare Grant of China Meteorological Administration(No.GYHY201306018)the Global Change and Air-Sea Interactions of State Oceanic Administration(No.GASI-03-01-01-05)
文摘An experiment using the Community Climate System Model(CCSM4), a participant of the Coupled Model Intercomparison Project phase-5(CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole(IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
文摘Mathematical model is developed for prediction of physiological changes in man during work in hot environment taking into consideration intensity of work, clothing and environment. To evaluate human functional state the heat stress index was calculated. Modeling researches made the conclusion that the main risk factor during work in hot environment is water losses that happens through thermoregulatory sweat evaporation. Modeling showed that in humid environment man wearing protective clothing has short time to work as water losses became more than 2% of human weight that means body dehydration. Preliminary model prediction can be used as preventive method to avoid hazard of human health.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50831007 and 51071179) National Basic Research Program of China (Grant No. 2011CB610401)
文摘The experimental phase equilibria of the Mn-Si-Zn system available in the literature were critically evaluated.Thermodynamic assessment of the Mn-Si-Zn system was then performed in the framework of CALPHAD(CALculation of PHAse Diagram) method on the basis of the experimental data in the literature.The optimal thermodynamic parameters of the ternary system were then obtained,yielding a good agreement with most of the experimental data.The complete liquidus projection and reaction scheme was also presented for the Mn-Si-Zn system.It is noteworthy that a stable closed liquid miscibility gap appears in the computed ternary phase diagrams,even though it is metastable in three boundary binaries.The occurrence of such a closed miscibility gap can be predicted by a criterion considering the general thermodynamic rules and the features of the three constituent binary systems.
基金support for this work by the International Science & Technology Cooperation Program of China (2010DFB70560) and(2010GH0902)
文摘The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.