The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60...The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.展开更多
Film-boiling heat transfer is a key phenomenon governing severe accident sequence in a sodium-cooled fast reactor. Experimental the fuel-coolant interaction process which may occur during a and theoretical work on fil...Film-boiling heat transfer is a key phenomenon governing severe accident sequence in a sodium-cooled fast reactor. Experimental the fuel-coolant interaction process which may occur during a and theoretical work on film-boiling heat transfer in sodium has hardly been carried out in the past. An experiment has been conducted in the early seventies to investigate sodium pool boiling. In this experiment, a hot tantalum sphere was immersed into subcooled liquid sodium. Film boiling was obtained for various sets of parameters: sodium subcooling from 4.1 K to 29. 1 K, initial sphere temperature ranging from 1,802.6 K to 2,633.7 K, sphere diameters of 1.27, 1.91 and 2.54 cm and sodium depths of 7.6 cm and 11.4 cm. In the present work, a simplified analysis based on the boundary layer theory is developed to describe pool film-boiling heat transfer on a hot sphere in liquid sodium. Two extreme cases are considered depending on sodium subcooling. In the case of high subcooling, most of the heat lost by the sphere is used to heat the sodium while for low subcooling, it is used to vaporize the liquid at the liquid-vapor interface. It will be shown that the scaling analysis predicts the heat fluxes within the order of magnitude when compared to the available experimental data. Besides, it allows an estimation of the contribution of these fluxes to the liquid heating and vaporization processes.展开更多
In this paper the transient temperature of liquid on micro metal layer heated by pulsed high energy laser is simulatedby numerical method, especially around the theoretical homogeneous boiling point(THBP). The relatio...In this paper the transient temperature of liquid on micro metal layer heated by pulsed high energy laser is simulatedby numerical method, especially around the theoretical homogeneous boiling point(THBP). The relationshipbetween temperature rising rate and laser fiuence is obtained; and under different temperature rising rate thedistributions of temperature in liquid and metal around the THBP are obtained. With numerical simulation therelation between the temperatUre rising rate and laser parameters (fluence and pulse width) is known and so in thefuture the rapid transient boiling phenomenon could be studied and analyzed.展开更多
Flow boiling heat transfer of nitrogen at high subcritical pressure conditions in a single vertical mini-channel with the diameter of 2.0 mm was experimentally investigated.The tested mass flux varied from 530 to 830 ...Flow boiling heat transfer of nitrogen at high subcritical pressure conditions in a single vertical mini-channel with the diameter of 2.0 mm was experimentally investigated.The tested mass flux varied from 530 to 830 kg/(m^2·s),the inlet pressure ranged from 630 to 1080 kPa,and the heat flux ranged from 0 to 223.2 kW/m^2.Effects of the mass flux and the inlet pressure on the nitrogen boiling curve were examined.Results showed that within the limited test conditions,the merging of three boiling curves indicates the dominance of nucleate boiling and the inlet pressure has a positive enhancement on heat transfer performance.Three heat transfer trends were identified with increasing heat flux.At low heat fluxes,the heat transfer coefficient increases first and then decreases with vapour quality.At intermediate heat fluxes,the heat transfer coefficient versus the vapour quality presents an inverted"U"shape.At high heat fluxes,a double valley shape was observed and the partial dry-out in intermittent flow and annular flow helps to interpret the phenomenon.The increasing inlet pressure increases the heat transfer coefficient over a wide range of vapour quality until the partial dry-out inception.The lower surface tension and lower latent heat of evaporation enhance the nucleate boiling for higher inlet pressure.A modified experimental correlation(mean absolute error(MAE)=19.3%)was proposed on the basis of the Tran correlation considering both the nucleate boiling and the partial dry-out heat transfer mechanism.展开更多
This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temper...This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS) branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation展开更多
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a correspond...A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.展开更多
Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of l, 1.5 and 2.5 mm. and also the visualizat...Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of l, 1.5 and 2.5 mm. and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.展开更多
Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five ...Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whose diameters range from 0.5 to 4.3 mm. Due to the effect of composition, the trend of combination of vapor bubbles was reduced, resulting in the increase of peak heat flux of binary mixture. With the increase of ethanol mole fraction, 0.5 mm diameter bead had lower value of peak heat flux, while for pure liquid the critical state is difficult to appear. With given diameter of glass bead, there existed an optimum value of mole fraction of ethanol, which was decreased with the increase of bead diameter. A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix, which agreed with the experimental results satisfactorily.展开更多
The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the satura...The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2's boiling behavior under such conditions. Also, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experiments indicated that an explosive boiling happened within LN2 by the laser heating, and a conventional boiling followed up after the newly-defined changeover time. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of the bubbles in the bubble cluster induced by the explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism.展开更多
文摘The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.
文摘Film-boiling heat transfer is a key phenomenon governing severe accident sequence in a sodium-cooled fast reactor. Experimental the fuel-coolant interaction process which may occur during a and theoretical work on film-boiling heat transfer in sodium has hardly been carried out in the past. An experiment has been conducted in the early seventies to investigate sodium pool boiling. In this experiment, a hot tantalum sphere was immersed into subcooled liquid sodium. Film boiling was obtained for various sets of parameters: sodium subcooling from 4.1 K to 29. 1 K, initial sphere temperature ranging from 1,802.6 K to 2,633.7 K, sphere diameters of 1.27, 1.91 and 2.54 cm and sodium depths of 7.6 cm and 11.4 cm. In the present work, a simplified analysis based on the boundary layer theory is developed to describe pool film-boiling heat transfer on a hot sphere in liquid sodium. Two extreme cases are considered depending on sodium subcooling. In the case of high subcooling, most of the heat lost by the sphere is used to heat the sodium while for low subcooling, it is used to vaporize the liquid at the liquid-vapor interface. It will be shown that the scaling analysis predicts the heat fluxes within the order of magnitude when compared to the available experimental data. Besides, it allows an estimation of the contribution of these fluxes to the liquid heating and vaporization processes.
文摘In this paper the transient temperature of liquid on micro metal layer heated by pulsed high energy laser is simulatedby numerical method, especially around the theoretical homogeneous boiling point(THBP). The relationshipbetween temperature rising rate and laser fiuence is obtained; and under different temperature rising rate thedistributions of temperature in liquid and metal around the THBP are obtained. With numerical simulation therelation between the temperatUre rising rate and laser parameters (fluence and pulse width) is known and so in thefuture the rapid transient boiling phenomenon could be studied and analyzed.
基金the National Natural Science Foundation of China(No.11872373)。
文摘Flow boiling heat transfer of nitrogen at high subcritical pressure conditions in a single vertical mini-channel with the diameter of 2.0 mm was experimentally investigated.The tested mass flux varied from 530 to 830 kg/(m^2·s),the inlet pressure ranged from 630 to 1080 kPa,and the heat flux ranged from 0 to 223.2 kW/m^2.Effects of the mass flux and the inlet pressure on the nitrogen boiling curve were examined.Results showed that within the limited test conditions,the merging of three boiling curves indicates the dominance of nucleate boiling and the inlet pressure has a positive enhancement on heat transfer performance.Three heat transfer trends were identified with increasing heat flux.At low heat fluxes,the heat transfer coefficient increases first and then decreases with vapour quality.At intermediate heat fluxes,the heat transfer coefficient versus the vapour quality presents an inverted"U"shape.At high heat fluxes,a double valley shape was observed and the partial dry-out in intermittent flow and annular flow helps to interpret the phenomenon.The increasing inlet pressure increases the heat transfer coefficient over a wide range of vapour quality until the partial dry-out inception.The lower surface tension and lower latent heat of evaporation enhance the nucleate boiling for higher inlet pressure.A modified experimental correlation(mean absolute error(MAE)=19.3%)was proposed on the basis of the Tran correlation considering both the nucleate boiling and the partial dry-out heat transfer mechanism.
文摘This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS) branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation
文摘A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.
文摘Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of l, 1.5 and 2.5 mm. and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.
文摘Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whose diameters range from 0.5 to 4.3 mm. Due to the effect of composition, the trend of combination of vapor bubbles was reduced, resulting in the increase of peak heat flux of binary mixture. With the increase of ethanol mole fraction, 0.5 mm diameter bead had lower value of peak heat flux, while for pure liquid the critical state is difficult to appear. With given diameter of glass bead, there existed an optimum value of mole fraction of ethanol, which was decreased with the increase of bead diameter. A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix, which agreed with the experimental results satisfactorily.
文摘The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2's boiling behavior under such conditions. Also, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experiments indicated that an explosive boiling happened within LN2 by the laser heating, and a conventional boiling followed up after the newly-defined changeover time. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of the bubbles in the bubble cluster induced by the explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism.