基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和...基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和后期(2—5月)为一致的南向(北向)流动;而6—8月EICC呈3段式分布,与另外两个时间段明显不同,表现为9°N以南、16°N以北区域的南向流动和9°—16°N区域的北向流动。前人研究认为印度东海岸的局地风应力是EICC的主要机制,本研究发现除局地风应力外,来自孟加拉湾中部的艾克曼抽吸(EkmanPumping)在全年也发挥着重要作用,并在2—5月(10—12月)驱动EICC的北向(南向)流动,而局地风应力则在10—12月有利于EICC的南向流动。EICC是孟加拉湾低盐水向赤道东印度洋和阿拉伯海输运的一个因素,在海盆间的热盐交换上发挥着重要作用。EICC的热输运在6—12月(2—5月)有利于(不利于)湾内温度的升高;盐输运则在全年都有利于孟加拉湾内盐度的增加。此外,EICC的一致南向(北向)流动以及3段式结构促进了湾内热盐的再分配,对于维持北印度洋的热量和盐度收支平衡具有重要作用。展开更多
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variabili...Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport(MHT) and meridional salt transport(MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents(WBCs) are estimated for the fi rst time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacifi c. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.展开更多
文摘基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和后期(2—5月)为一致的南向(北向)流动;而6—8月EICC呈3段式分布,与另外两个时间段明显不同,表现为9°N以南、16°N以北区域的南向流动和9°—16°N区域的北向流动。前人研究认为印度东海岸的局地风应力是EICC的主要机制,本研究发现除局地风应力外,来自孟加拉湾中部的艾克曼抽吸(EkmanPumping)在全年也发挥着重要作用,并在2—5月(10—12月)驱动EICC的北向(南向)流动,而局地风应力则在10—12月有利于EICC的南向流动。EICC是孟加拉湾低盐水向赤道东印度洋和阿拉伯海输运的一个因素,在海盆间的热盐交换上发挥着重要作用。EICC的热输运在6—12月(2—5月)有利于(不利于)湾内温度的升高;盐输运则在全年都有利于孟加拉湾内盐度的增加。此外,EICC的一致南向(北向)流动以及3段式结构促进了湾内热盐的再分配,对于维持北印度洋的热量和盐度收支平衡具有重要作用。
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956001)the CMA(No.GYHY201306018)+2 种基金the Chinese Academy of Sciences(CAS)(No.XDA11010301)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)the State Oceanic Administration(SOA)(No.GASI-03-01-01-05)
文摘Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport(MHT) and meridional salt transport(MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents(WBCs) are estimated for the fi rst time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacifi c. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.