Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory condi...Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.展开更多
The magnetic properties and magnetocaloric effects of amorphous and crystalline Gd55Co35Ni10 ribbons are investigated.A main phase with a Ho 12 Co 7-type monoclinic structure(space group P21/c) and a minor phase with ...The magnetic properties and magnetocaloric effects of amorphous and crystalline Gd55Co35Ni10 ribbons are investigated.A main phase with a Ho 12 Co 7-type monoclinic structure(space group P21/c) and a minor phase with a Ho4Co3-type hexagonal structure(space group P63/m) are obtained for crystalline ribbon after annealing.The amorphous ribbons order ferromagnetically and undergo a second-order transition at 192 K.For crystalline Gd55Co35Ni10 ribbons,two magnetic phase transitions occur at 158 and 214 K,respectively.The peak value of-△SM under a field change of 0-5 T is 6.5 J/kg K at 192 K for amorphous Gd55Co35Ni10 ribbons.A relatively large magnetic entropy change(~5.0 J/kg K) under a field change of 0-5 T for the crystalline Gd55Co35Ni10 ribbons is obtained in the temperature interval range of 154-214 K.The large platform of magnetic entropy change and the negligible thermal/magnetic hysteresis loss mean the crystalline Gd55Co35Ni10 compound can satisfy the requirement of the Ericsson-type refrigerator working in the temperature range from 154K to 214K.展开更多
This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles w...This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles were synthesized in a wide temperature range below 230°C. The composition, morphology, and methylene blue (MB) decoloration characteristics of the obtained products were investigated by X-ray diffraction, Fourier transform infrared spectroscope, X-ray photoelectron spectroscope, and scanning and transmission electron microscope. The dehydrating polycondensation of Ti(IV)-hydrates and the decomposition of (NH4)2Ti3O7 intermediates with the temperature increase lead to the direct formation of anatase TiO2 nanoparticles under the hydrothermal environments. The strong MB decoloration of the hydrothermal products obtained at the low (≤130°C) and high (≥180°C) temperatures are attributed to the adsorption of Ti(IV)-hydrates and the photocatalysis of anatase TiO2 nanoparticles, respectively.展开更多
Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts h...Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts have been made in exploiting wearable and conformal sensors for ther- mal characterization of human skin. In this respect, skin- mounted thermochromic films show great capabilities in body temperature sensing. Thermochromic temperature sensors are attractive because of their easy signal analysis and optical recording, such as color transition and fluorescence emission change upon thermal stimuli. Here, desirable mechanical properties that match epidermis are obtained by physical crosslinking of polydiacetylene (PDA) and transparent elas- tomeric polydimethylsiloxane (PDMS) networks. The result- ing PDA fdm displayed thermochromic and thermo- fluorescent transition temperature in the range of 25-85℃, with stretchability up to 300% and a skin-like Young's mod- ulus of -230 kPa. This easy signal-handling provides excellent references for further design of convenient noninvasive sen- sing systems.展开更多
基金supported by National Natural Science Foundation of China (Grant No.40971168)National Basic Research Program of China (973 Program) (Grant No. 2007CB407206)
文摘Disintegration of rock is one of the primary processes of soil formation and geomorphology and is affected considerably by water and heat.This study focused on the disintegration characteristics under laboratory conditions of typical purple mudstone from the Tuodian group of Jurassic red beds(J3t) in Tuodian Town,Shuangbai county,Yunnan Province of southern China.The fresh mudstone was subjected to alternating applications of water,heat and hydrothermal interaction during five treatments:wetting-drying(WD),saturation(ST),refrigeration-heating(RH),a combination of wetting-drying and refrigeration-heating(WDRH),and a combination of saturation and refrigeration-heating(STRH).Each treatment was run in twenty-four cycles.The results showed that there are three types of disintegration:collapsing disintegration,exfoliation disintegration and imperceptible disintegration.The cumulative disintegration rate(percentage of cumulative disintegrated mass to the initiative sample mass passed through a 2 mm sieve) produced a 'S'-shape function when related to treatment cycle time and closely fit a logistic model(R2 > 0.99).The rank order of the cumulative disintegration rate resulting from the five treatments was as the following:WDRH > STRH > ST > WD > RH.Because of alternating periods of moisture and dryness,WD caused the most disintegration,while RH alone resulted in imperceptible disintegration.Additionally,there was a negative correlation between the disintegration rate of each treatment cycle(percentage of disintegrated mass to the treated sample mass) and treatment cycle number.There was a positive correlation between this rate and temperature change under moist conditions,indicating that a change in temperature greatly accelerates the disintegration of parent rock when water was supplied.
基金supported by the Guangdong Provincial Science and Technology Program(Grant Nos.2010B050300008,2009B090300273 and 2007B010600043)the Guangzhou Municipal Science and Technology Program(Grant No.12F582080022)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (Grant No.x2clB7120290)the Fundamental Research Funds for the Central Universities(Grant Nos.2011ZM0014 and 2012ZZ0013)
文摘The magnetic properties and magnetocaloric effects of amorphous and crystalline Gd55Co35Ni10 ribbons are investigated.A main phase with a Ho 12 Co 7-type monoclinic structure(space group P21/c) and a minor phase with a Ho4Co3-type hexagonal structure(space group P63/m) are obtained for crystalline ribbon after annealing.The amorphous ribbons order ferromagnetically and undergo a second-order transition at 192 K.For crystalline Gd55Co35Ni10 ribbons,two magnetic phase transitions occur at 158 and 214 K,respectively.The peak value of-△SM under a field change of 0-5 T is 6.5 J/kg K at 192 K for amorphous Gd55Co35Ni10 ribbons.A relatively large magnetic entropy change(~5.0 J/kg K) under a field change of 0-5 T for the crystalline Gd55Co35Ni10 ribbons is obtained in the temperature interval range of 154-214 K.The large platform of magnetic entropy change and the negligible thermal/magnetic hysteresis loss mean the crystalline Gd55Co35Ni10 compound can satisfy the requirement of the Ericsson-type refrigerator working in the temperature range from 154K to 214K.
基金supported by the Ministry of Science and Technology of China (Grant No. 2010CB631004)the Fundamental Research Funds for the Central Universities (Grant Nos. 1112021302, 1106021343, 1116021301)+1 种基金the PAPD and National Natural Science Foundation of China (Grant Nos. 50831004, 11004098, 51171078)the research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (Grant No. AE201015)
文摘This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles were synthesized in a wide temperature range below 230°C. The composition, morphology, and methylene blue (MB) decoloration characteristics of the obtained products were investigated by X-ray diffraction, Fourier transform infrared spectroscope, X-ray photoelectron spectroscope, and scanning and transmission electron microscope. The dehydrating polycondensation of Ti(IV)-hydrates and the decomposition of (NH4)2Ti3O7 intermediates with the temperature increase lead to the direct formation of anatase TiO2 nanoparticles under the hydrothermal environments. The strong MB decoloration of the hydrothermal products obtained at the low (≤130°C) and high (≥180°C) temperatures are attributed to the adsorption of Ti(IV)-hydrates and the photocatalysis of anatase TiO2 nanoparticles, respectively.
基金supported by the National Key Research and Development Program of China (2016YFB0700300)the National Natural Science Foundation of China (51503014 and51501008)the State Key Laboratory for Advanced Metals and Materials (2016Z-03)
文摘Wearable and stretchable physical sensors that can conformally contact on the surface of organs or skin provide a new opportunity for human-activity monitoring and personal healthcare. Particularly, various attempts have been made in exploiting wearable and conformal sensors for ther- mal characterization of human skin. In this respect, skin- mounted thermochromic films show great capabilities in body temperature sensing. Thermochromic temperature sensors are attractive because of their easy signal analysis and optical recording, such as color transition and fluorescence emission change upon thermal stimuli. Here, desirable mechanical properties that match epidermis are obtained by physical crosslinking of polydiacetylene (PDA) and transparent elas- tomeric polydimethylsiloxane (PDMS) networks. The result- ing PDA fdm displayed thermochromic and thermo- fluorescent transition temperature in the range of 25-85℃, with stretchability up to 300% and a skin-like Young's mod- ulus of -230 kPa. This easy signal-handling provides excellent references for further design of convenient noninvasive sen- sing systems.