Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The resu...Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.展开更多
The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ...The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.展开更多
A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous n...A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous nature of prepared glass samples with 5%,and 10%nickel oxide in molar fraction.While Li_(3)P and Ni_(2)P_(4)O_(12)phases are precipitated with a high nickel content up to 15%in molar fraction.As nickel is substituted for lithium,a systematic increase in glass transition temperature(T_(g))and glass softening temperatures(T_(s))is observed.This is greatly related to the increased structure,coherence in the glass network.Structural investigation showed that Ni_(2+) spectra are present in both octahedral and tetrahedral sites.Physical properties such as glass density((2.38±0.1)-(2.46±0.1)g/cm^(3)),and molar volume((42.28±0.1)-(39.15±0.1)cm^(3)/mol)are examined.The NiO/Li_(2)O replacements led to a decrease in the dissolution rate of the resultant amorphous materials from 1.53×10^(-5)to 3.20×10^(-6)g/(cm^(2)·min).Thermal expansion coefficients CTE of the glasses are diverse from 157×10^(-7) to 96×10^(-7)℃^(-1) over the temperature range of 25-250℃.The prepared glasses are expected to be useful as a low-temperature sealing material.展开更多
An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model i...An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.展开更多
基金Project(50378062)supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject supported by Key Laboratory Program of the Ministry of Education,China
文摘Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.
基金the financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Special Found of International S&T Cooperation Project of China (No.2010DFA72730)
文摘The study firstly discusses the pyrolysis characteristics and kinetics by thermogravimetric analysis (TGA), and then investigates the pyrolysis of lignite and co-pyrolysis with plastic (polyethylene or polypropyl- ene) in tube furnace. Meanwhile, the research focuses on the co-pyrolysis products under different mix- ing ratios as well as pyrolysis products at different testing temperatures and heating rates. The results show that higher final testing temperature and lower heating rate contribute to bond fission in lignite pyrolysis, resulting in less char product. In co-pyrolysis, lignite acts as hydrogen donor, and the yields of char and water rise with increasing amount of plastic in the mixture, while the yields of gas and tar decrease; and a little admixture of plastic will promote the production of gas and tar. Kinetic studies indi- cate that in temperature range of 530-600℃, activation energies of lignite are higher than those of lig- nite/plastic blends, and as plastic mass ratio increases from 0% to 10%, samples need less energy to be decomposed during co-pyrolysis.
文摘A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous nature of prepared glass samples with 5%,and 10%nickel oxide in molar fraction.While Li_(3)P and Ni_(2)P_(4)O_(12)phases are precipitated with a high nickel content up to 15%in molar fraction.As nickel is substituted for lithium,a systematic increase in glass transition temperature(T_(g))and glass softening temperatures(T_(s))is observed.This is greatly related to the increased structure,coherence in the glass network.Structural investigation showed that Ni_(2+) spectra are present in both octahedral and tetrahedral sites.Physical properties such as glass density((2.38±0.1)-(2.46±0.1)g/cm^(3)),and molar volume((42.28±0.1)-(39.15±0.1)cm^(3)/mol)are examined.The NiO/Li_(2)O replacements led to a decrease in the dissolution rate of the resultant amorphous materials from 1.53×10^(-5)to 3.20×10^(-6)g/(cm^(2)·min).Thermal expansion coefficients CTE of the glasses are diverse from 157×10^(-7) to 96×10^(-7)℃^(-1) over the temperature range of 25-250℃.The prepared glasses are expected to be useful as a low-temperature sealing material.
基金Supported by the Chung Yuan Christian University (CYCU-97-CR-CE)
文摘An isothermal operation is implemented by employing a thermogravimetric analyzer (TGA) for simulating the thermal decomposition behavior of 58μm pine sawdust in air atmosphere.An independent parallel reaction model is adopted in this study to describe the thermal decomposition mechanism.The Weibull distribution function is used to record and analyze the weight loss during isothermal decomposition at different temperatures(500,600,700,and 800°C).The total weight loss of the pine sawdust is assumed as a linear combination of individual weight loss from three components,including the char and two volatile matters.The plot of the thermal decomposition rate curve leads to kinetic parameters such as the reaction rate constants and the reaction order.The results show that the Weibull distribution function successfully represents decomposition curves of three components,and fits the experimental data very well.Therefore,this study provides a simple way to evaluate the decomposition rate of biomass combustion in a real combustor.