Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biod...Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.展开更多
\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid sta...\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid state in its storage time. This laid a foundation for estimating the relative chemical stability of the drug by determination of its decomposition kinetics using TGA. Although the observed thermal decomposition kinetics of CEZ·Na was complex, a conversion level of 1% was chosen for evaluation of the stability of CEZ·Na crystalline since the mechanism here was more likely to be that of the actual product failure. The evaluation results suggested that the α form of CEZ·Na had the best stability and the amorphous one was the least stable one among α form, dehydrated α form and amorphous form.展开更多
Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL‐04 (EB‐60, EMS‐90) were purified by ammonium sulphate precipitation and dialysis, followed by ion‐exc...Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL‐04 (EB‐60, EMS‐90) were purified by ammonium sulphate precipitation and dialysis, followed by ion‐exchange and gel‐permeation chromatography. The purified enzymes elucidated a single band in the 43‐kDa region on sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. The optimum pH and temperature of the purified enzymes were found to be 5.0 and 40 °C, respec‐tively. Mutant strain MnPs exhibited a broader active pH range and higher thermal stability than native MnP. Purified MnPs from selected mutants showed almost identical properties to native MnP in electrophoresis, steady‐state kinetics, and metal ion and endocrine‐disrupting compound (EDC) degradation efficiency. Although the fastest reaction rates occurred with Mn2+, MnPs displayed the highest affinity for ABTS, methoxyhydroquinone, 4‐aminophenol and reactive dyes. MnP activity was significantly enhanced by Mn2+and Cu2+, and inhibited in the presence of Zn2+, Fe2+, ethylene‐diaminetetraacetic acid and cysteine to various extents, with Hg2+ as the most potent inhibitory agent. MnPs from all sources efficiently catalyzed the degradation of the EDCs, nonylphenol and triclosan, removing over 80%after 3 h of treatment, which was further increased up to 90%in the presence of MnP‐mediator system. The properties of T. versicolor MnPs, such as high pH and ther‐mal stability, as well as unique Michaelis‐Menten kinetic parameters and high EDC elimination effi‐ciency, render them promising candidates for industrial exploitation.展开更多
In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in...In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.展开更多
Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them ten...Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them tend to be deactivated at high relative humidity(RH) levels. In the case of the benchmark P25 TiO2 photocatalyst, we observe a significant decrease in non-NO2 selectivity from 95.02% to 58.33% when RH increases from 20% to 80%. Interestingly, the porous TiO2(B) microspheres synthesized in this work exhibit 99% selectivity at 20% RH;the selectivity remains as high as 96.18% at 80% RH. The high humidity tolerance of the TiO2(B) sample can be ascribed to its strong water desorption capacity and easy O2 adsorption at elevated temperatures, which reflects the fact that the superoxide radical is the main active species for the deep oxidation of NOx. This work may inspire the design of efficient photothermal catalysts with application in NOx removal in hot and humid environments.展开更多
To obtain a kind of biodegradable polymer material with satisfactory properties, a new biodegradable copolyester poly(lactic acid-co-glycol terephthalate) (PETA), was synthesized from three monomers of lactic acid...To obtain a kind of biodegradable polymer material with satisfactory properties, a new biodegradable copolyester poly(lactic acid-co-glycol terephthalate) (PETA), was synthesized from three monomers of lactic acid, glycol and terephthalic acid. The resulting copolyesters, PETA, were characterized by FT-IR, ^1H-NMR, DSC, TGA and by the ways of weight loss rate to characterize their biodegradability. The findings in this work indicated that, the Tins and Tas of copolyesters PETA increased with increasing contents of the terephthalic acid units. From the biodegradation tests in natural soil, boiling water, acid buffer solution and alkali buffer solution, it was shown that the biodegradability of copolyesters PETA decreased with increasing contents of the terephthalic acid units.展开更多
文摘Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.
文摘\ According to the analysis of the residual products by thermogravimetric analysis (TGA), the thermal decomposition process of cefazolin sodium (CEZ·Na) was thought to be similar to the degradation in solid state in its storage time. This laid a foundation for estimating the relative chemical stability of the drug by determination of its decomposition kinetics using TGA. Although the observed thermal decomposition kinetics of CEZ·Na was complex, a conversion level of 1% was chosen for evaluation of the stability of CEZ·Na crystalline since the mechanism here was more likely to be that of the actual product failure. The evaluation results suggested that the α form of CEZ·Na had the best stability and the amorphous one was the least stable one among α form, dehydrated α form and amorphous form.
基金a part of a research project entitled "The development of immobilized ligninolytic enzymes for industrial applications" supported by Higher Education Commission (HEC), Islamabad, Pakistan
文摘Extracellular manganese peroxidases (MnPs) produced by native and mutant strains of Trametes versicolor IBL‐04 (EB‐60, EMS‐90) were purified by ammonium sulphate precipitation and dialysis, followed by ion‐exchange and gel‐permeation chromatography. The purified enzymes elucidated a single band in the 43‐kDa region on sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. The optimum pH and temperature of the purified enzymes were found to be 5.0 and 40 °C, respec‐tively. Mutant strain MnPs exhibited a broader active pH range and higher thermal stability than native MnP. Purified MnPs from selected mutants showed almost identical properties to native MnP in electrophoresis, steady‐state kinetics, and metal ion and endocrine‐disrupting compound (EDC) degradation efficiency. Although the fastest reaction rates occurred with Mn2+, MnPs displayed the highest affinity for ABTS, methoxyhydroquinone, 4‐aminophenol and reactive dyes. MnP activity was significantly enhanced by Mn2+and Cu2+, and inhibited in the presence of Zn2+, Fe2+, ethylene‐diaminetetraacetic acid and cysteine to various extents, with Hg2+ as the most potent inhibitory agent. MnPs from all sources efficiently catalyzed the degradation of the EDCs, nonylphenol and triclosan, removing over 80%after 3 h of treatment, which was further increased up to 90%in the presence of MnP‐mediator system. The properties of T. versicolor MnPs, such as high pH and ther‐mal stability, as well as unique Michaelis‐Menten kinetic parameters and high EDC elimination effi‐ciency, render them promising candidates for industrial exploitation.
基金the support provided by the Research&Technology Development Project of China National Petroleum Corporation(No.2008D-4704-2)
文摘In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45--65℃ (with 55℃ being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33% of saturates, 27.06% of aromatics, 13.24% of resins and the oil removal efficiency reached up to 58.73% at 55 ~C when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20--C33 were signifi- cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efficiency in KO8-2 composting reactor reached 50.12% after a degradation duration of 60 days.
文摘Semiconductor oxides are widely used to achieve photocatalytic removal of NOx(NO and NO2) species. These materials also exhibit enhanced oxidation ability in thermally assisted photocatalysis;however, many of them tend to be deactivated at high relative humidity(RH) levels. In the case of the benchmark P25 TiO2 photocatalyst, we observe a significant decrease in non-NO2 selectivity from 95.02% to 58.33% when RH increases from 20% to 80%. Interestingly, the porous TiO2(B) microspheres synthesized in this work exhibit 99% selectivity at 20% RH;the selectivity remains as high as 96.18% at 80% RH. The high humidity tolerance of the TiO2(B) sample can be ascribed to its strong water desorption capacity and easy O2 adsorption at elevated temperatures, which reflects the fact that the superoxide radical is the main active species for the deep oxidation of NOx. This work may inspire the design of efficient photothermal catalysts with application in NOx removal in hot and humid environments.
文摘To obtain a kind of biodegradable polymer material with satisfactory properties, a new biodegradable copolyester poly(lactic acid-co-glycol terephthalate) (PETA), was synthesized from three monomers of lactic acid, glycol and terephthalic acid. The resulting copolyesters, PETA, were characterized by FT-IR, ^1H-NMR, DSC, TGA and by the ways of weight loss rate to characterize their biodegradability. The findings in this work indicated that, the Tins and Tas of copolyesters PETA increased with increasing contents of the terephthalic acid units. From the biodegradation tests in natural soil, boiling water, acid buffer solution and alkali buffer solution, it was shown that the biodegradability of copolyesters PETA decreased with increasing contents of the terephthalic acid units.