Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the...Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.展开更多
Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld meta...Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.展开更多
2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zo...2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.展开更多
Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fr...Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fractography of stress corrosion cracking(SCC) samples were observed by optical and scanning electron microscopy, respectively. An X-ray diffraction study was carried out on the fractured surfaces of the SCC specimens. The results indicated that a strong basal fiber was formed on the base material, whereas the grains in the stir zone were reoriented with their most basal planes tilted 25 o to the welding direction. Feather-like twins and hydride formed under slow strain rate tensile(SSRT) stress in air and aggressive solutions, respectively. Transgranular cracks propagated and finally failed on the retreating side in the solution. The hydride phase confirmed to sit on the fracture surface demonstrated the delayed hydride cracking(DHC) mechanism of the alloy.展开更多
The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the sti...The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the stir zone of the FSSW AZ31 sheet joints, and all cracks initiate at the stir zone outer edge between the upper and lower sheet. When the cycle force equals 1 kN, the crack propagates along the interface of heat-affected zone and thermo-mechanical zone, simultaneously across the direction of force; while the cycle force equals 3 kN, the crack propagates along the diameter of stir zone and shear failure occurs finally. Moreover, the transverse microsections indicate that there is a tongue-like region at the outer edge of stir zone between the two AZ31 sheets, and the direction of tongue-like region is toward outside of the stirred zone and all fatigue cracks initiate at the tongue-like region.展开更多
It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dyn...It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.展开更多
In this investigation, 2024 aluminium alloy plates were friction stir welded, a sequence of experiments was performedincluding fatigue and crack propagation tests in air, under pre-corrosion and in a 3.5% NaCl solutio...In this investigation, 2024 aluminium alloy plates were friction stir welded, a sequence of experiments was performedincluding fatigue and crack propagation tests in air, under pre-corrosion and in a 3.5% NaCl solution, in combination withfractography analyses of near-threshold region, Paris region and finial fracture region with the aid of scanning electron microscopy(SEM). Results showed that the corrosive environment caused a dramatical decrease in fatigue lives of FS welds, the corrosionfatigue lives of FS welds were almost a half of those of the as-welded specimens. The crack growth rates in FS welds were higherthan their counterparts in base materials, under the corrosive environment, the crack growth rate differences between base materialsand FS welds become increasingly apparent with the increase of stress intensity factor range ΔK, but the pre-corrosion process hadlittle effect on the FS welds’ crack propagation behavior except for shortening the crack initiation lives greatly.展开更多
This paper concentrates on simulating fracture in thin walled single-lap joints connected by resistance spot-welding(RSW)process which were subjected to tensile loading.For this purpose,three sets of lap-joints with d...This paper concentrates on simulating fracture in thin walled single-lap joints connected by resistance spot-welding(RSW)process which were subjected to tensile loading.For this purpose,three sets of lap-joints with different spot configurations were tested to achieve the joints’tensile behavior.To simulate the joints tensile behavior,firstly a 2D axisymmetric finite element(FE)model was used to calculate residual stresses induced during the welding process.Then the results were transferred to 3D models as pre-stress.In this step,cohesive zone model(CZM)technique was used to simulate fracture in the models under tensile load.Cohesive zone parameters were extracted using coach-peel and shear lap specimens.The results were employed to simulate deformation and failure in single lap spot weld samples.It has been shown that considering the residual stresses in simulating deformation and fracture load enables quite accurate predictions.展开更多
The aim of the present work is to evaluate the fatigue crack growth behaviour of 12 mm thick AA 7075-T651 aluminium alloy plates joined by FSW. Fatigue crack growth test was carried out on center cracked tensile (CCT)...The aim of the present work is to evaluate the fatigue crack growth behaviour of 12 mm thick AA 7075-T651 aluminium alloy plates joined by FSW. Fatigue crack growth test was carried out on center cracked tensile (CCT) specimens extracted from the FSW joints and unwelded parent metal. Transverse tensile properties of the unwelded parent metal and welded joints were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. The scanning electron microscope was used to characterize the fracture surfaces. It was found that the ΔKcr of the welded joint is reduced by 10×10-3 MPa·m1/2 in comparison with the unwelded parent metal. Hence, the fatigue life of the friction stir welded AA 7075-T651aluminium alloy joints is appreciably lower than that of the unwelded parent metal, which is attributed to the dissolution of precipitates in the weld region during friction stir welding.展开更多
The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures alon...The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures along grain boundaries (GBs) in the PMZ are liquefied during welding, and their re-solidified materials present hypoeutectic characters, which lead to more severe segregation of the Zn element along GBs, and thus enhance the cracking tendency of the PMZ. The main reasons for liquation cracking of PMZ are described as that the absence of liquid at the terminal stage of solidification leads to the occurrence of shrinkage cavities in PMZ, from which liquation cracking initiates, and propagates along the weakened GBs under the tensile stress originating from solidification shrinkage and thermal contraction. Lower heat input can reduce the cracking tendency, and the plastic processing such as rolling also contributes to the mitigation of PMZ liquation cracking by reducing the size of eutectoid phases and changing their distribution in the base metal.展开更多
Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulatio...Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.展开更多
In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then ...In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then the macrostructures and microstructures were investigated using optical microscopy,scanning electron microscopy,X-ray diffractometry,and transmission electron microscopy.The results show that the reheat cracking occurs primarily along the grain boundaries in the weld when the Ti2AlNb circular welded joints are heated up to about 700℃.During the heat treatment,an almost complete transformation of B2→O happens while the temperature goes up through the O single-phase region.Then,O→B2+O phase transformation occurs primarily along the grain boundaries as the weld metal continues to heat up to the B2+O dual-phase region.Under the high tension stress consisting of welding residual stress and phase transformation stress,reheat cracking occurs at the interface between the B2+O dual-phase layer and the O-phase matrix.展开更多
The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld ind...The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.展开更多
Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1....Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.展开更多
基金Project(HIT.NSRIF.2014007)supported by the Fundamental Research Funds for the Central Universities,China
文摘Welding joint of GH4169 alloy with a good formation was obtained. No macroscopic defects occurred in the joint. The weld had mainly a dendritic structure; the base metal was a solid solution of Ni, Cr, and Fe, and the strengthening-phase particles such as Ni3Nb were dispersively distributed along the grain boundary. The average tensile strength of the joint reached 743.7 MPa, and the Vickers hardness of the weld exceeded HV 300. Because of the segregation of the low-melting compound Ni3Nb at the grain boundary of the fusion zone, liquid cracks tended to occur as a result of welding stress. The formation of liquid cracks was inhibited by adding an alloying element, Mn, to the welding bath, because Mn diffused to the fusion zone and the high-melting phase Mn2Nb formed, and thus the overall properties of the joint were improved.
文摘Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.
文摘2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.
文摘Evolution of microstructure including texture and fractography in a friction-stir welded(FSW) AZ31 magnesium alloy was investigated. The texture was measured using a neutron diffractometer. The microstructure and fractography of stress corrosion cracking(SCC) samples were observed by optical and scanning electron microscopy, respectively. An X-ray diffraction study was carried out on the fractured surfaces of the SCC specimens. The results indicated that a strong basal fiber was formed on the base material, whereas the grains in the stir zone were reoriented with their most basal planes tilted 25 o to the welding direction. Feather-like twins and hydride formed under slow strain rate tensile(SSRT) stress in air and aggressive solutions, respectively. Transgranular cracks propagated and finally failed on the retreating side in the solution. The hydride phase confirmed to sit on the fracture surface demonstrated the delayed hydride cracking(DHC) mechanism of the alloy.
基金Project(2007CB613705)supported by the National Key Technologies R&D Program of ChinaProject(2011DFA50902)supported by the International S&T Cooperation Program of China
文摘The fatigue behavior of friction stir spot welded (FSSW) AZ31 magnesium alloy sheet joints was investigated by tension- compression of fatigue test. The results suggest that all the fatigue failures occur at the stir zone of the FSSW AZ31 sheet joints, and all cracks initiate at the stir zone outer edge between the upper and lower sheet. When the cycle force equals 1 kN, the crack propagates along the interface of heat-affected zone and thermo-mechanical zone, simultaneously across the direction of force; while the cycle force equals 3 kN, the crack propagates along the diameter of stir zone and shear failure occurs finally. Moreover, the transverse microsections indicate that there is a tongue-like region at the outer edge of stir zone between the two AZ31 sheets, and the direction of tongue-like region is toward outside of the stirred zone and all fatigue cracks initiate at the tongue-like region.
基金Special Fund for the Major Basic Research Projects(No.G1 9990 650 )
文摘It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.
基金Project(51405309)supported by the National Natural Science Foundation of ChinaProject(L2014065)supported by the General Project of Scientific Research of Liaoning Provincial Education Department,ChinaProject(2013024011)supported by the Natural Science Foundation of Liaoning Province,China
文摘In this investigation, 2024 aluminium alloy plates were friction stir welded, a sequence of experiments was performedincluding fatigue and crack propagation tests in air, under pre-corrosion and in a 3.5% NaCl solution, in combination withfractography analyses of near-threshold region, Paris region and finial fracture region with the aid of scanning electron microscopy(SEM). Results showed that the corrosive environment caused a dramatical decrease in fatigue lives of FS welds, the corrosionfatigue lives of FS welds were almost a half of those of the as-welded specimens. The crack growth rates in FS welds were higherthan their counterparts in base materials, under the corrosive environment, the crack growth rate differences between base materialsand FS welds become increasingly apparent with the increase of stress intensity factor range ΔK, but the pre-corrosion process hadlittle effect on the FS welds’ crack propagation behavior except for shortening the crack initiation lives greatly.
文摘This paper concentrates on simulating fracture in thin walled single-lap joints connected by resistance spot-welding(RSW)process which were subjected to tensile loading.For this purpose,three sets of lap-joints with different spot configurations were tested to achieve the joints’tensile behavior.To simulate the joints tensile behavior,firstly a 2D axisymmetric finite element(FE)model was used to calculate residual stresses induced during the welding process.Then the results were transferred to 3D models as pre-stress.In this step,cohesive zone model(CZM)technique was used to simulate fracture in the models under tensile load.Cohesive zone parameters were extracted using coach-peel and shear lap specimens.The results were employed to simulate deformation and failure in single lap spot weld samples.It has been shown that considering the residual stresses in simulating deformation and fracture load enables quite accurate predictions.
文摘The aim of the present work is to evaluate the fatigue crack growth behaviour of 12 mm thick AA 7075-T651 aluminium alloy plates joined by FSW. Fatigue crack growth test was carried out on center cracked tensile (CCT) specimens extracted from the FSW joints and unwelded parent metal. Transverse tensile properties of the unwelded parent metal and welded joints were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. The scanning electron microscope was used to characterize the fracture surfaces. It was found that the ΔKcr of the welded joint is reduced by 10×10-3 MPa·m1/2 in comparison with the unwelded parent metal. Hence, the fatigue life of the friction stir welded AA 7075-T651aluminium alloy joints is appreciably lower than that of the unwelded parent metal, which is attributed to the dissolution of precipitates in the weld region during friction stir welding.
基金Project (2011ZX06001-003) supported by the National Science and Technology Major Project, ChinaProject (51274092) supported by the National Natural Science Foundation of China
文摘The ZK60 magnesium alloy plates were welded by laser beam welding (LBW) and the microstructures in the partially melted zone (PMZ) of welded joints were investigated. For the as-cast alloy, the eutectoid mixtures along grain boundaries (GBs) in the PMZ are liquefied during welding, and their re-solidified materials present hypoeutectic characters, which lead to more severe segregation of the Zn element along GBs, and thus enhance the cracking tendency of the PMZ. The main reasons for liquation cracking of PMZ are described as that the absence of liquid at the terminal stage of solidification leads to the occurrence of shrinkage cavities in PMZ, from which liquation cracking initiates, and propagates along the weakened GBs under the tensile stress originating from solidification shrinkage and thermal contraction. Lower heat input can reduce the cracking tendency, and the plastic processing such as rolling also contributes to the mitigation of PMZ liquation cracking by reducing the size of eutectoid phases and changing their distribution in the base metal.
文摘Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.
文摘In order to clarify the characteristics and formation mechanism of the reheat cracking in Ti2AlNb weldments,a series of heat treatment conditions were performed to the circular joints welded by electron beam,and then the macrostructures and microstructures were investigated using optical microscopy,scanning electron microscopy,X-ray diffractometry,and transmission electron microscopy.The results show that the reheat cracking occurs primarily along the grain boundaries in the weld when the Ti2AlNb circular welded joints are heated up to about 700℃.During the heat treatment,an almost complete transformation of B2→O happens while the temperature goes up through the O single-phase region.Then,O→B2+O phase transformation occurs primarily along the grain boundaries as the weld metal continues to heat up to the B2+O dual-phase region.Under the high tension stress consisting of welding residual stress and phase transformation stress,reheat cracking occurs at the interface between the B2+O dual-phase layer and the O-phase matrix.
文摘The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.
文摘Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.