以(NH_4)_2MoO_4和C_6H_(12)O_6作为前驱体,NaCl+KCl(摩尔比1:1)为原料,采用熔盐合成法在900℃制备了纳米片层状Mo2C粉末,利用X射线衍射分析(X-ray diffraction,XRD)、扫描电子显微镜观察(scanning electron microscopy,SEM)等方法研究...以(NH_4)_2MoO_4和C_6H_(12)O_6作为前驱体,NaCl+KCl(摩尔比1:1)为原料,采用熔盐合成法在900℃制备了纳米片层状Mo2C粉末,利用X射线衍射分析(X-ray diffraction,XRD)、扫描电子显微镜观察(scanning electron microscopy,SEM)等方法研究了Mo_2C粉末物相结构和微观形貌的演变规律。实验结果表明:反应中相变过程是由MoO_3变成MoO_2再到产物Mo_2C的生成;Mo_2C由斜方晶型向六方晶型转变的温度出现在900~1000℃区间;提高合成温度和延长反应时间有利于加快反应进程,但过高的合成温度会导致晶粒显著长大。展开更多
A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electro...A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1-1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 ℃) and a current rate of 2 C (500 mA.g-1) showed no significant capacity fade.展开更多
文摘以(NH_4)_2MoO_4和C_6H_(12)O_6作为前驱体,NaCl+KCl(摩尔比1:1)为原料,采用熔盐合成法在900℃制备了纳米片层状Mo2C粉末,利用X射线衍射分析(X-ray diffraction,XRD)、扫描电子显微镜观察(scanning electron microscopy,SEM)等方法研究了Mo_2C粉末物相结构和微观形貌的演变规律。实验结果表明:反应中相变过程是由MoO_3变成MoO_2再到产物Mo_2C的生成;Mo_2C由斜方晶型向六方晶型转变的温度出现在900~1000℃区间;提高合成温度和延长反应时间有利于加快反应进程,但过高的合成温度会导致晶粒显著长大。
文摘A high voltage layered Li1.2Ni0.16Co0.08Mn0.56O2 cathode material with a hollow spherical structure has been synthesized by molten-salt method in a NaCI flux. Characterization by X-ray diffraction and scanning electron microscopy confirmed its structure and proved that the as-prepared powder is constituted of small, homogenously sized hollow spheres (1-1.5 μm). The material exhibited enhanced rate capability and high first cycle efficiency due to the good dispersion of secondary particles. Galvanostatic cycling at different temperatures (20, 40, and 60 ℃) and a current rate of 2 C (500 mA.g-1) showed no significant capacity fade.