Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon m...Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.展开更多
Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging t...Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging technology with negligible pollution. More significantly for a research ship, emission levels need to be substantially low to have quality measurements. A feasibility study is carried-out First time in the world, to drive an ice class multi-disciplinary ORV (Oceanography Research Vessel) Sagarnidbi, using hydrogen powered fuel cell. Sagamidhi is equipped with special equipments viz., Deep Sea winch, specially designed cranes for Launching and retrieval of ROV (Remotely Operable Vehicle), DSMC (Deep Sea Mining Crawler), Tsunami systems, manned/unmanned submersible and ACS (Autonomous Coring System) and other facilities that support research in Indian, International and Antarctic waters. Beside this, the propulsion system along with DP (Dynamic Positioning), centralized air conditioning and special equipments require enormous electrical power. The combustion of diesel oil in an engine, that coupled with an alternator generates electrical power required, along with NOx (Nitrous Oxides), SOx (Sulphur Oxides) and PM (Particulate Matter) emissions. Shipping industry is the fourth largest contributor to air pollution and carbon emissions, particularly in coastal areas, and the growth rate makes the problem even more critical. Stringent international air pollution regulation and increasing fuel price paves the way for an alternative "green emission technology". Various fuel cells were analyzed with different combination of fuel, electrolyte and electrodes. From the analysis, it has been found that SOFC (Solid Oxide Fuel Cell) is most suitable for the present scenario. A fuel cell designed with hydrogen as fuel, zirconium oxides stabilized with yttrium oxide as electrolyte and zirconium electrodes is used for 1.5 MW power output and 0.5 MW through regenerator. Volume required for storage of hydrogen is in line with volume of fuel and a high standard safety measures were taken using sensors. The present system saves 3000 MT/annum of diesel oil costing 3,000,000 USD approximately.展开更多
The use of electric energy in marine vessels has been increasing in recent years. In general, it is motivated by the low ecological impact. However, in the case of underwater vehicles it is functionally essential. The...The use of electric energy in marine vessels has been increasing in recent years. In general, it is motivated by the low ecological impact. However, in the case of underwater vehicles it is functionally essential. The objective of this study is to demonstrate the advantage of electric power generation and storage based on on-board hydrogen generation via the reaction between activated aluminum and water and application of the hydrogen in a fuel cell. The original activation process enabling a spontaneous reaction with water to produce hydrogen as well as a parametric study of hydrogen generation rate and yield are briefly described. The potential increase in specific energy (energy per unit mass) and energy density (energy per unit volume) vs. batteries and other means of hydrogen storage is presented. It is shown that the use of the present technology may result in a substantial increase of specific electric energy along with a reduction in volume or an increase in operating time for the same overall mass of energy storage and generation system.展开更多
文摘Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system.This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance.A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism.Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model.The dynamic response of the system is identified according to the inertia of its subcomponent and controller.Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment.The simulation results show reasonable accuracy compare with lab test.The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.
文摘Rising fuel prices, increasing emission levels and impending environmental regulations made shipping industry to find an alternate for internal combustion engine in 21st century. Fuel cell is a sustainable, emerging technology with negligible pollution. More significantly for a research ship, emission levels need to be substantially low to have quality measurements. A feasibility study is carried-out First time in the world, to drive an ice class multi-disciplinary ORV (Oceanography Research Vessel) Sagarnidbi, using hydrogen powered fuel cell. Sagamidhi is equipped with special equipments viz., Deep Sea winch, specially designed cranes for Launching and retrieval of ROV (Remotely Operable Vehicle), DSMC (Deep Sea Mining Crawler), Tsunami systems, manned/unmanned submersible and ACS (Autonomous Coring System) and other facilities that support research in Indian, International and Antarctic waters. Beside this, the propulsion system along with DP (Dynamic Positioning), centralized air conditioning and special equipments require enormous electrical power. The combustion of diesel oil in an engine, that coupled with an alternator generates electrical power required, along with NOx (Nitrous Oxides), SOx (Sulphur Oxides) and PM (Particulate Matter) emissions. Shipping industry is the fourth largest contributor to air pollution and carbon emissions, particularly in coastal areas, and the growth rate makes the problem even more critical. Stringent international air pollution regulation and increasing fuel price paves the way for an alternative "green emission technology". Various fuel cells were analyzed with different combination of fuel, electrolyte and electrodes. From the analysis, it has been found that SOFC (Solid Oxide Fuel Cell) is most suitable for the present scenario. A fuel cell designed with hydrogen as fuel, zirconium oxides stabilized with yttrium oxide as electrolyte and zirconium electrodes is used for 1.5 MW power output and 0.5 MW through regenerator. Volume required for storage of hydrogen is in line with volume of fuel and a high standard safety measures were taken using sensors. The present system saves 3000 MT/annum of diesel oil costing 3,000,000 USD approximately.
文摘The use of electric energy in marine vessels has been increasing in recent years. In general, it is motivated by the low ecological impact. However, in the case of underwater vehicles it is functionally essential. The objective of this study is to demonstrate the advantage of electric power generation and storage based on on-board hydrogen generation via the reaction between activated aluminum and water and application of the hydrogen in a fuel cell. The original activation process enabling a spontaneous reaction with water to produce hydrogen as well as a parametric study of hydrogen generation rate and yield are briefly described. The potential increase in specific energy (energy per unit mass) and energy density (energy per unit volume) vs. batteries and other means of hydrogen storage is presented. It is shown that the use of the present technology may result in a substantial increase of specific electric energy along with a reduction in volume or an increase in operating time for the same overall mass of energy storage and generation system.