熔盐堆是国际公认推荐的6种第四代反应堆型之一,可以使用液态核燃料,其核燃料生产、转运和贮存所涉及工艺过程与常规固态核燃料堆型也不同。为做好核燃料管理和核安全监管,有必要对其贮存的临界安全进行分析。本研究参考美国液态燃料熔...熔盐堆是国际公认推荐的6种第四代反应堆型之一,可以使用液态核燃料,其核燃料生产、转运和贮存所涉及工艺过程与常规固态核燃料堆型也不同。为做好核燃料管理和核安全监管,有必要对其贮存的临界安全进行分析。本研究参考美国液态燃料熔盐反应堆MSRE(Molten Salt Reactor Experiment)相关设计参数,通过选取液态燃料熔盐堆核燃料的贮存建模、临界参数分析、蒙特卡罗中子输运软件仿真模拟计算,分析不同因素对核燃料盐贮存的影响,总结了设计模型下干燥环境贮存、水淹环境贮存的keff值及与燃料盐总质量变化的规律。最终,得到了不同情况下次临界安全控制的质量及与对应原料盐、中间产物、考虑容器壁影响时的对比。本研究结合法律法规及核材料流转过程进行分析讨论,归纳核燃料盐核临界安全特性,从核安全监管角度首次提出了相关监督审评要点。展开更多
A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fu...A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.展开更多
To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base...To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.展开更多
Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according ...Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.展开更多
A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate...A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.展开更多
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t...This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.展开更多
The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was us...The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was used to synthesize γ-LiAlO2.Highly dispersed AlOOH·nH2O and LiOH·H2O aqueous solutions were mixed to form a colloid mixture,which was calcined to synthesize γ-LiAlO2.Thermogravimetric analysis(TGA),X-ray dif-fraction(XRD),and scanning electron microscopy(SEM) were used to study the composition and morphology of the intermediate and final products.The analysis results showed that an intermediate product Li2Al4CO3(OH)12 was produced after the colloid mixture was dried at 80 ℃,and highly purified γ-LiAlO2 powder with fine particle size was resulted from the subsequent calcinations.A single MCFC was assembled with a matrix of the γ-LiAlO2 pow-der.The testing results showed that the matrix performed well in preventing gas leakage.展开更多
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performanc...A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.展开更多
文摘熔盐堆是国际公认推荐的6种第四代反应堆型之一,可以使用液态核燃料,其核燃料生产、转运和贮存所涉及工艺过程与常规固态核燃料堆型也不同。为做好核燃料管理和核安全监管,有必要对其贮存的临界安全进行分析。本研究参考美国液态燃料熔盐反应堆MSRE(Molten Salt Reactor Experiment)相关设计参数,通过选取液态燃料熔盐堆核燃料的贮存建模、临界参数分析、蒙特卡罗中子输运软件仿真模拟计算,分析不同因素对核燃料盐贮存的影响,总结了设计模型下干燥环境贮存、水淹环境贮存的keff值及与燃料盐总质量变化的规律。最终,得到了不同情况下次临界安全控制的质量及与对应原料盐、中间产物、考虑容器壁影响时的对比。本研究结合法律法规及核材料流转过程进行分析讨论,归纳核燃料盐核临界安全特性,从核安全监管角度首次提出了相关监督审评要点。
基金Supported by Shanghai Science and Technology Development (No. 993012003) and the National Natural Science Foundation of China (No.50206012).
文摘A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.
文摘To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.
文摘Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.
文摘A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.
基金The National High Technology Research and Development Program of China (863 Program) (No.2003AA517020)
文摘This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
基金Supported by the Green Gen plan Program of China Huaneng Group (HNKJ06-H01)
文摘The present study reports a simple,effective and energy-efficient method to prepare γ-LiAlO2 powder as a matrix in a molten carbonate fuel cell(MCFC).In our experiments,aqueous solution based sol-gel technique was used to synthesize γ-LiAlO2.Highly dispersed AlOOH·nH2O and LiOH·H2O aqueous solutions were mixed to form a colloid mixture,which was calcined to synthesize γ-LiAlO2.Thermogravimetric analysis(TGA),X-ray dif-fraction(XRD),and scanning electron microscopy(SEM) were used to study the composition and morphology of the intermediate and final products.The analysis results showed that an intermediate product Li2Al4CO3(OH)12 was produced after the colloid mixture was dried at 80 ℃,and highly purified γ-LiAlO2 powder with fine particle size was resulted from the subsequent calcinations.A single MCFC was assembled with a matrix of the γ-LiAlO2 pow-der.The testing results showed that the matrix performed well in preventing gas leakage.
基金supported by Sharif University of Technology,Vice President for Research Grant G930111
文摘A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.