A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve...A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.展开更多
The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the...The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.展开更多
We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identify...We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.展开更多
A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 at...The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.展开更多
基金Project(51276074)supported by the National Natural Science Foundation of ChinaProject(2014NY008)supported by Innovation Research Foundation of Huazhong University of Science and Technology,China
文摘A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.
基金the financial support from the National Natural Science Foundation of China(No.2117619)the Shaanxi Province Major Project of Innovation of Science and Technology(No.2008zkc03205,No.2011KTZB03-03-01)
文摘The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.
基金supported by the National Natural Science Foundation of China(No.91641205,No.51622605,No.91541201)the Shanghai Science and Technology Committee(No.17XD1402000)
文摘We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (-80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model [Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the de- composition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-l-al and OH radical.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金supported by the National Key R&D Program of China (No.2017YFA0402800)National Natural Science Foundation of China (No.51622605 and No.91541201)Shanghai Science and Technology Committee (No.17XD1402000)
文摘The laminar flame propagation of 1-heptene/air mixtures covering equivalence ratios from 0.7 to 1.5 is investigated in a constant-volume cylindrical combustion vessel at 373K and elevated pressures (1, 2, 5, and 10 atm). Laminar flame speed and Markstein length are derived from the recorded schlieren images. A kinetic model of 1-heptene combustion is developed based on our previous kinetic model of 1-hexene. The model is validated against the laminar flame speed data measured in this work and the ignition delay time data in literature. Modeling analyses, such as sensitivity analysis and rate of production analysis, are performed to help understand the high temperature chemistry of 1-heptene under various pressures and its influence on the laminar flame propagation. Furthermore, the laminar flame propagation of 1-heptene/air mixtures is compared with that of n-heptane/air mixtures reported in our previous work. The laminar flame speed values of 1-heptene/air mixtures are observed to be faster than those of n-heptane/air mixtures under most conditions due to the enhanced exothermicity and reactivity.