In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for pro...In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.展开更多
With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward d...With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward different mechanisms,but no one gave a reasonable explanation to the mechanism of rock burst.In this paper,based on the energy theories,we studied the energy limit equilibrium(ELE) of coal mine rock burst The coal seam with rock burst is divided into energy limit equilibrium zone(ELEZ)(A) and elastic zone(B);we also determined the position where the rock burst occurs,including the roof and floor of coal seams;in addition,we derived the limit width of ELEZ and the mathematic relationship between the limit width and occurrence mechanism of rock burst:the energy difference function(EDF),w(x) = w_j - w_p,because first-order derivative w'(x),is less than 0.So EDF is a monotonically decreasing function.The graph of the energy difference function was also determined, through which we analysed the occurrence mechanism of rock burst.展开更多
基金Project(20110490894) supported by the Postdoctoral Science Foundation of ChinaProject(50908228) supported by the National Natural Science Foundation of ChinaProject(51021001) supported by the Science Foundation for Creative Research Groups of China
文摘In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.
基金Financial support for this project,provided by the Key Basic Research Program of China(No.2006CB202200)the National Major Project of Ministry of Education(No.304005)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0656)
文摘With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward different mechanisms,but no one gave a reasonable explanation to the mechanism of rock burst.In this paper,based on the energy theories,we studied the energy limit equilibrium(ELE) of coal mine rock burst The coal seam with rock burst is divided into energy limit equilibrium zone(ELEZ)(A) and elastic zone(B);we also determined the position where the rock burst occurs,including the roof and floor of coal seams;in addition,we derived the limit width of ELEZ and the mathematic relationship between the limit width and occurrence mechanism of rock burst:the energy difference function(EDF),w(x) = w_j - w_p,because first-order derivative w'(x),is less than 0.So EDF is a monotonically decreasing function.The graph of the energy difference function was also determined, through which we analysed the occurrence mechanism of rock burst.