The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In resp...The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In response to the drier and windier conditions,dust emissions increase by 26% in the Sahara Desert and by 18% on the global scale relative to present day.Sea salt emissions increase in high latitudes (>60°) but decrease in middle latitudes (30°-60°) of both hemispheres due to the poleward shift of westerlies,leading to a 3% decrease in global emissions.The burdens of dust and sea salt increase by 31% and 7% respectively,because reductions in rainfall over the tropical oceans increase the lifetime of particles in the warmer climate.The higher aerosol loading in the doubled-CO2 climate reinforces aerosol DRE by -0.2 W m-2,leading to an additional cooling of 0.1℃ at the surface compared with the climatic effects of aerosols in present day.The additional cooling from changes in natural aerosols compensates for up to 15% of the regional warming induced by doubled CO2.展开更多
Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concer...Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.展开更多
In wine production, the typical characteristics of variety, defined by its place of their origin, contribute to the development of distinctive and unique wines. In the current study, we analyzed the effect of the envi...In wine production, the typical characteristics of variety, defined by its place of their origin, contribute to the development of distinctive and unique wines. In the current study, we analyzed the effect of the environment using vine response and grape composition as indicators. Four cv. Tannat vineyards in three different climatic regions of Uruguay with similar soil conditions were studied in 2008 and 2009. Vines grafted onto SO4 (Vitis berlandieri × Vitis riparia) rootstock and were trained on a trellis system. Weather information was obtained from weather stations (MMO standards). At each vineyard, we recorded: yield per plant, pruning weight, leaf area and pre-dawn leaf water potential. We analyzed sugars, total acidity and pH, polyphenolic potential, organic acids and berry weight. Analysis of variance, Pearson correlations and discriminant analysis were carried out. The climate factors with the highest discriminant weight were water balance, degree days (〉 10 ℃) of maturation and rainfall during the vegetative growth period. Plant response allowed us to discriminate between vineyards regardless of the year and was consistent with climate. Exposed leaf area and length of maturation period were the indexes with the highest values, followed by leaf water potential and grape yield. The total anthocyanin content, sugar contents and their daily accumulation, and acid composition statistically separate regions regardless of the year. We concluded that plant response and grape composition were strongly influenced by water supply and thermal conditions during ripening.展开更多
Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial resp...Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.展开更多
基金supported by the National Basic Research Program of China(973 program,Grant 2010CB951901)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant XDA05100503)
文摘The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In response to the drier and windier conditions,dust emissions increase by 26% in the Sahara Desert and by 18% on the global scale relative to present day.Sea salt emissions increase in high latitudes (>60°) but decrease in middle latitudes (30°-60°) of both hemispheres due to the poleward shift of westerlies,leading to a 3% decrease in global emissions.The burdens of dust and sea salt increase by 31% and 7% respectively,because reductions in rainfall over the tropical oceans increase the lifetime of particles in the warmer climate.The higher aerosol loading in the doubled-CO2 climate reinforces aerosol DRE by -0.2 W m-2,leading to an additional cooling of 0.1℃ at the surface compared with the climatic effects of aerosols in present day.The additional cooling from changes in natural aerosols compensates for up to 15% of the regional warming induced by doubled CO2.
文摘Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.
文摘In wine production, the typical characteristics of variety, defined by its place of their origin, contribute to the development of distinctive and unique wines. In the current study, we analyzed the effect of the environment using vine response and grape composition as indicators. Four cv. Tannat vineyards in three different climatic regions of Uruguay with similar soil conditions were studied in 2008 and 2009. Vines grafted onto SO4 (Vitis berlandieri × Vitis riparia) rootstock and were trained on a trellis system. Weather information was obtained from weather stations (MMO standards). At each vineyard, we recorded: yield per plant, pruning weight, leaf area and pre-dawn leaf water potential. We analyzed sugars, total acidity and pH, polyphenolic potential, organic acids and berry weight. Analysis of variance, Pearson correlations and discriminant analysis were carried out. The climate factors with the highest discriminant weight were water balance, degree days (〉 10 ℃) of maturation and rainfall during the vegetative growth period. Plant response allowed us to discriminate between vineyards regardless of the year and was consistent with climate. Exposed leaf area and length of maturation period were the indexes with the highest values, followed by leaf water potential and grape yield. The total anthocyanin content, sugar contents and their daily accumulation, and acid composition statistically separate regions regardless of the year. We concluded that plant response and grape composition were strongly influenced by water supply and thermal conditions during ripening.
基金funded by The Rufford Foundation(http://www.rufford.org/)
文摘Mountain ecosystems are relatively more vulnerable to climate change since human induced climate change is projected to be higher at high altitudes and latitudes. Climate change induced effects related to glacial response and water hazards have been documented in the Himalayas in recent years, yet studies regarding species' response to climate change are largely lacking from the mountains and Himalayas of Nepal. Changes in distribution and latitudinal/altitudinal range shift, which are primary adaptive responses to climate change in many species,are largely unknown due to unavailability of adequate data from the past. In this study, we explored the elevational distribution of butterflies in Langtang Village Development Committee(VDC) of Langtang National park; a park located in the high altitudes of Nepal. We found a decreasing species richness pattern along the elevational gradient considered here.Interestingly, elevation did not appear to have a significant effect on the altitudinal distribution ofbutterflies at family level. Also, distribution of butterflies in the area was independent of habitat type,at family level. Besides, we employed indicator group analysis(at family level) and noticed that butterfly families Papilionidae, Riodinidae, and Nymphalidae are significantly associated to high, medium and low elevational zone making them indicator butterfly family for those elevational zones, respectively. We expect that this study could serve as a baseline information for future studies regarding climate change effects and range shifts and provide avenues for further exploration of butterflies in the high altitudes of Nepal.