Background: In recent years, there has been a proliferation of technology and sport science utilized within an athlete's training, especially at the elite level. However, the sport science is a broad field, encompas...Background: In recent years, there has been a proliferation of technology and sport science utilized within an athlete's training, especially at the elite level. However, the sport science is a broad field, encompassing disciplines such as biomechanics, motor control and learning, exercise physiology, sports medicine, sport psychology to name a few. Rarely are these disciplines applied in an integrated manner. The purpose of this study was to document the effectiveness of an integrated biomechanics and motor control protocol for improving athlete's performance in the high jump. Methods: Four elite high jumpers performed baseline jumps under no^mal conditions and then jumps using a specific external focus of attention cue designed to improve their running posture. Three-dimensional biomeehanical analysis was used to quantify the upright posture throughout the approach as well as horizontal velocity at plant and vertical velocity at takeoff. Results: The results showed that when using the external focus of attention cue, the jumpers were significantly more upright during the approach, had significantly higher horizontal velocities at plant, and generated significantly greater vertical velocities during the takeoff. Conclusion: The results of this study lay the foundation for future work examining how integrating sport science disciplines can improve performance of elite level athletes.展开更多
文摘Background: In recent years, there has been a proliferation of technology and sport science utilized within an athlete's training, especially at the elite level. However, the sport science is a broad field, encompassing disciplines such as biomechanics, motor control and learning, exercise physiology, sports medicine, sport psychology to name a few. Rarely are these disciplines applied in an integrated manner. The purpose of this study was to document the effectiveness of an integrated biomechanics and motor control protocol for improving athlete's performance in the high jump. Methods: Four elite high jumpers performed baseline jumps under no^mal conditions and then jumps using a specific external focus of attention cue designed to improve their running posture. Three-dimensional biomeehanical analysis was used to quantify the upright posture throughout the approach as well as horizontal velocity at plant and vertical velocity at takeoff. Results: The results showed that when using the external focus of attention cue, the jumpers were significantly more upright during the approach, had significantly higher horizontal velocities at plant, and generated significantly greater vertical velocities during the takeoff. Conclusion: The results of this study lay the foundation for future work examining how integrating sport science disciplines can improve performance of elite level athletes.