The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a di...The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.展开更多
Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between tw...Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between two water-retention parameters, the scaling parameter related to the inverse of the air-entry pressure (avG, cm- 1) and the curve shape factor related to soil pore-size distribution (n) of the van Genuchten water-retention equation, and soil texture (sand, silt, and clay contents) were examined at multiple scales. One hundred twenty-eight undisturbed soil samples were collected from a 640-m transect located in Fuxin, China. Soil water-retention curves were measured and the van Genuchten parameters were obtained by curve fitting. The relationships between the two parameters and soil texture at the observed scale and at multiple scales were evaluated using Pearson correlation and joint multifractal analyses, respectively. The results of Pearson correlation analysis showed that the parameter c^vG was significantly correlated with sand, silt, and clay contents at the observed scale. Joint multifractal analyses, however, indicated that the parameter ~vG was not correlated with silt and sand contents at multiple scales. The parameter n was positively correlated with clay content at multiple scales. Sand content was significantly correlated with the parameter n at the observed scale but not at multiple scales. Clay contents were strongly correlated to both water-retention parameters because clay content was relatively low in the soil studied, indicating that water retention was dominated by clay content in the field of this study at all scales. These suggested that multiple-scale analyses were necessary to fully grasp the spatial variability of soil water-retention characteristics.展开更多
Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coef...Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass number A = 40, 100, 150, 208 are extracted from two-parameter parabola fitting to the calculated energy per particle. We find that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause the change of the symmetry energy coefficient by about 0.5 Me V and the influence of nuclear deformations on the symmetry energy coefficients is more evident for light and intermediate nuclei.展开更多
基金supported by the"973"project envisaged in the State Key Basic R&D Program(2006CB202505).
文摘The DFT-based (density fimctional theory) ab initio quantum mechanical methods have been applied to study the basicity of the nitrogen-containing compounds in petroleum. The results have indicated that there is a distinct relationship between the protonation energy of nitrogen-containing compounds and their basicity. The more negative the protonation energy, the stronger the basicity is. It has been also found that aliphatic amines are more basic than pyridines or aromatic amines, and all these compounds are more basic than pyrroles. The addition of the aromatic rings can influence the basicity of anilines, while the 5- and 6-membered heterocyclic compounds function differently. The solvent properties may affect the basicity of these nitrogen-containing compounds.
基金Supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China (Nos.2008BADA4B03 and 2009BADB3B07)
文摘Soil water-retention characteristics at measurement scales are generally different from those at application scales, and there is scale disparity between them and soil physical properties. The relationships between two water-retention parameters, the scaling parameter related to the inverse of the air-entry pressure (avG, cm- 1) and the curve shape factor related to soil pore-size distribution (n) of the van Genuchten water-retention equation, and soil texture (sand, silt, and clay contents) were examined at multiple scales. One hundred twenty-eight undisturbed soil samples were collected from a 640-m transect located in Fuxin, China. Soil water-retention curves were measured and the van Genuchten parameters were obtained by curve fitting. The relationships between the two parameters and soil texture at the observed scale and at multiple scales were evaluated using Pearson correlation and joint multifractal analyses, respectively. The results of Pearson correlation analysis showed that the parameter c^vG was significantly correlated with sand, silt, and clay contents at the observed scale. Joint multifractal analyses, however, indicated that the parameter ~vG was not correlated with silt and sand contents at multiple scales. The parameter n was positively correlated with clay content at multiple scales. Sand content was significantly correlated with the parameter n at the observed scale but not at multiple scales. Clay contents were strongly correlated to both water-retention parameters because clay content was relatively low in the soil studied, indicating that water retention was dominated by clay content in the field of this study at all scales. These suggested that multiple-scale analyses were necessary to fully grasp the spatial variability of soil water-retention characteristics.
基金supported by the National Natural Science Foundation of China(Grants Nos.11275052,11365005 and 11422548)
文摘Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass number A = 40, 100, 150, 208 are extracted from two-parameter parabola fitting to the calculated energy per particle. We find that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause the change of the symmetry energy coefficient by about 0.5 Me V and the influence of nuclear deformations on the symmetry energy coefficients is more evident for light and intermediate nuclei.